K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

Xét ~~~~\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)(Do a,b,c không nhỏ hơn 1 nên abc > 0)\(\Leftrightarrow a^2b^2c^2-\left(abc^2+ab^2c+a^2bc\right)+\left(ab+bc+ca\right)-1\ge a^2b^2c^2-\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(a^2+b^2+c^2\right)-1\)\(\Leftrightarrow-\left(abc^2+ab^2c+a^2bc\right)+\left(ab+bc+ca\right)\ge-\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(abc^2+ab^2c+a^2bc\right)\ge2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)\(\Leftrightarrow\left(bc-ca\right)^2+\left(ab-bc\right)^2+\left(ca-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(\Leftrightarrow c^2\left(a-b\right)^2+b^2\left(a-c\right)^2+a^2\left(b-c\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(\Leftrightarrow\left(c^2-1\right)\left(a-b\right)^2+\left(b^2-1\right)\left(a-c\right)^2+\left(a^2-1\right)\left(b-c\right)^2\ge0\)(Đúng do a,b,c không nhỏ hơn 1)

Đẳng thức xảy ra khi a = b = c hoặc (a,b,c) = (1,1,k) (k bất kì) và các hoán vị

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

29 tháng 1 2019

cho a, b, c là các số thực dương thỏa mạn abc=1 chứng minh rằng a/(2b+a) +b/(2c+b)+c/(2a+c)>=1

Xét BĐT: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy},\forall x,y\ge1\)

Chứng minh: Quy đồng ta được: \(\left(1+xy\right)\left(1+y^2\right)+\left(1+xy\right)\left(1+x^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow1+y^2+xy+xy^3+1+x^2+xy+x^3y\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow2xy+xy^3+x^3y\ge x^2+y^2+2x^2y^2\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)đúng \(\forall x,y\ge1\)

Không mất tính tổng quát giả sử c là số nhỏ nhất trong 3 số a, b, c

Áp dụng BDDT phía trên: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Cần chứng minh: \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\Leftrightarrow2\left(\frac{1}{1+ab}-\frac{1}{1+abc}\right)+\frac{1}{1+c^2}-\frac{1}{1+abc}\ge0\)

\(\Leftrightarrow\frac{2ab\left(c-1\right)}{\left(1+ab\right)\left(1+abc\right)}+\frac{c\left(ab-c\right)}{\left(1+c^2\right)\left(1+abc\right)}\ge0\)đúng \(\forall a,b\ge c\ge1\)

Vậy BĐT đã được chứng minh, dấu = xảy ra khi a=b=c=1

4 tháng 3 2021

cảm ơn nha