Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3
n chữ số
b) 10n + 18n - 1
= 100...0 - 1 - 9n + 27n
n chữ số 0
= 999...9 - 9n + 27
n chữ số 9
= 9.(111..1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
=> 10n + 18n - 1 chia hết cho 27
c) 10n + 72n - 1
= 100...0 - 1 + 72n
n chữ số 1
= 999...9 - 9n + 81n
n chữ số 9
= 9.(111...1 - n) + 81n
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9
Típ theo lm tương tự câu trên
a/ ab - ba = a x10 + b - ( b x 10 + a ) = a x 10 + b - b x 10 - a = ax 9 - b x 9 . Hiệu này chia hết cho 9 vì a x9 và b x 9 cùng chia hết cho 9
b/ abc - cba = a x 100 + b x 10 + c - c x 100 - b x 10 - a = a x99 - c x 99 . Hiệu này chia hết cho 99 vì a x 99 và c x 99 cùng chia hết cho 9
c / 10^7. 10^2 + 10^7. 10 + 10^7 = 10^7. ( 10^2 + 10 + 1 ) = 10^7. 111 chia hết cho 5 và cho 111 ( tức là chia hết cho 555=5.111)
d/ 81^7 = 9^14= 9^13.9
27^9 = (9.3)^9 = 9^9. 3^9 = 9^9. 9^4. 3 = 9^13 . 3
81^7 - 27^9 - 9^13 = 9^13.9 - 9^13. 3 - 9^13 = 9^13 . ( 9 - 3 - 1 ) = 9^13. 5 chia hết cho 9 và cho 5 nên 81^7- 27^9 - 9^13 chia hết cho 45
mình ghi lại đề nhé
Chứng tỏ rằng :
a, 1028 + 8 chia hết cho 72
b, 88 + 220 chia hết cho 17
c, 10n + 18n - 1 chia hết cho 27
d, 10n +72n - 1 chia hết cho 81
a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8
Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9
=> 1028 + 8 chia hết cho 8.9 = 72
b) 88 + 220 = (23)8 + 220 = 224 + 220 = 220.(24 + 1) = 220.17 chia hết cho 17 => 88 + 220 chia hết cho 17
c) 10n + 18n - 1 = (10n - 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)
= 9.111...1 - 9n + 27n (Có n chữ số 1)
= 9.(111...1 - n) + 27n
Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 9.3 = 27
Mà 27n chia hết cho 27
Nên 9.(111...1 - n) + 27n chia hết cho 27
Vậy....
d) 10n + 72n - 1 = (10n - 1) - 9n + 81n = 99...9 - 9n + 81n (Có n chữ số 9)
= 9.(11..1 - n) + 81n
Nhận xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9
=> 9.(11...1 - n) chia hết cho 9.9 = 81
Mà 81n chia hết cho 81
Nên 9.(11..1 - n) + 81n chia hết cho 81
Vậy...
a/ \(10^9+2=\left(10....0\right)+2=\left(100...02\right)⋮3\) (do có tổng các c/s chia hết cho 3)
b/ \(10^{50}-1=\left(100...0\right)-1=\left(99...9\right)⋮9\) (do tổng các c,s chia hết cho 9)