Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1995 chia hết cho 3 (1)
1994 chia hết cho 2 (2)
1996 chia hết cho 4 (3)
Từ (1) ; (2) ; (3) => 1994.1995.1996 chia hết cho 3.2.4 = 24
\(A=8\left(1+8\right)+8^3\left(1+8\right)+...+8^{2021}\left(1+8\right)\)
\(=8.9+8^3.9+...+8^{2021}.9=9\left(8+8^3+...+8^{2021}\right)⋮9\)
810-89-88
= 88(82-81-80)
= 88.55 chia hết cho 55
Vậy 810-89-88
Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.
Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$.
$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)
Do đó $p$ chia $3$ dư $1$
Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)
b.
$\overline{abcd}=1000a+100b+10c+d$
$=1000a+96b+8c+(d+2c+4b)$
$=8(125a+12b+c)+(d+2c+4b)$
Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$
$\Rightarrow \overline{abcd}\vdots 8$
Ta có đpcm.
810 - 89 - 88 = 88.(82 - 8 - 1) = 88.55 chia hết cho 55
chọn mk nha
Gợi ý giải:
Con nhận xét: $5 + 5^2 + 5^3 = 155 = 5.31$;
$5^4 + 5^5 + 5^6 = 5^3.(5 + 5^2 + 5^3) = 5^3.5.31 = 5^4.31$.
...
Do đó, ta nhóm ba số hạng liên tiếp để làm xuất hiện $31$ ở mỗi tổng:
$5+5^2+5^3+...+5^{21}=\left(5+5^2+5^3\right)+...+\left(5^{19}+5^{20}+5^{21}\right)$
$= 5.31+5^4 . 31+...+5^{19}. 31$
$=31 .\left(5+5^4+...+5^{19}\right)$ $\vdots$ $31$.