
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=7+7^2+7^3+...+7^{120}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(A=7.57+7^4.57+...+7^{118}.57\)
\(A=57\left(7+7^4+...+7^{118}\right)\)
\(\Rightarrow A⋮57\)

Ta có :
\(C+3^{101}=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^{96}\left(1+3+3^2\right)+3^{99}\left(1+3+3^2\right)\)
\(C+3^{101}=13+3^3.13+.....+3^{96}.13+3^{99}.13\)
=> C+3101 chia hết cho 13
Mặt khác 3101 không chia hết cho 13
=> C không chia hết cho 13
Ta có :
\(C=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+....+7^{27}\left(1+3+3^2\right)+7^{30}\)
\(C=57+7^3.57+....+7^{27}.57+7^{30}\)
Mà 7^30 không chia hết cho 57
=> C không chia hết cho 57

7^ 36 + 7^37 + 7^38
= 7^36 ( 1+7+7^2 )
= 7^36 . 57 chia hết cho 57
điều phải chứng minh
h nhé
chúc bạn học tốt