K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

6^4 + 324 = 1620

1620 chia hết cho 20 và 81 nên 6^4 +324 chia hết cho 20 và 81.

Bài này dễ vậy còn gì nữa.

27 tháng 7 2018

bạn ơi nếu thế thì mình ko cần hỏi đâu

27 tháng 9 2017

a) Ta thấy \(M=8^5-2^{11}=\left(2^3\right)^5-2^{11}=2^{15}-2^{11}=2^{11}\left(2^4-1\right)=15.2^{11}\)

Ta có \(15⋮15;2^{11}⋮2\) mà (2;15) = 1 nên \(15.2^{11}⋮30\) hay M chia hết 30.

b) \(N=6^4+324=3^4.2^4+3^4.2^2=3^4.2^2\left(2^2+1\right)=3^4.4.5=20.3^4⋮20\)

27 tháng 7 2018

Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath tham khảo

2 tháng 2 2019

đồng dư nhé bạn.

Vì a là số nguyên dương nên \(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

Mặt khác \(\left(2,3\right)=1\)

\(\Rightarrow4^a+2⋮6\)

Khi đó \(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy với a,b là các số nguyên dương và a+1;b+2007 chia hết cho 6 thì \(4^a+a+b\)chia hết cho 6

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

19 tháng 9 2018

Vì a, b không chia hết cho 3 nên a, b có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\inℤ\right)\)

* Nếu \(a=3k+1\)\(\Rightarrow\)\(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1 

\(b=3k+1\)\(\Rightarrow\)\(b^2=\left(3k+1\right)^2=9k^2+1\) chia 3 dư 1 

* Nếu \(a=3k+2\)\(\Rightarrow\)\(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(b=3k+2\)\(\Rightarrow\)\(b^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(\Rightarrow\)\(a^2,b^2\) chia 3 dư 1 

\(\Rightarrow\)\(a^2-b^2⋮3\)

Lại có : 

\(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left[\left(a^4-2a^2b^2+b^4\right)+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Xét \(\left(a^2-b^2\right)⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2+3a^2b^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮9\)

Hay \(a^6-b^6⋮9\) ( đpcm ) 

Chúc bạn học tốt ~ 

20 tháng 10 2024

cmr n chia hết cho 73 dư 64

1 tháng 7 2016

\(5^6-10^4=\left(5^3\right)^2-\left(10^2\right)^2=\left(125-100\right)\left(125+100\right)=225.25\)

Ta thấy \(225⋮9\Rightarrow5^6-10^4⋮9\)

2 tháng 7 2016

Áp dung theo cách đặt nhân tử chung nhé

28 tháng 8 2016

Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.

Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.

4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.

Bạn xem lại đề.

20 tháng 9 2016

Sai đề rồi

17 tháng 6 2016

a) 29 - 1 = 83 - 1 = (8 - 1)(82+8+1) = 7*73 chia hết cho 73.

b) 56 - 104 = 54*(52 - 24) = 54 *(25 - 16) = 54 *9 chia hết cho 9.

19 tháng 8 2019

Cảm ơn bạn nhé!

19 tháng 9 2017

a, Ta có \(5^6 - 10^4 = 5^6-(2.5)^4 =5^6 -2^4.5^4 =5^4 (5^2 -2^4) =5^4 ( 25 -16) =5^4 . 9 \)