Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sina+\sqrt{3}cosa=2\left(\frac{1}{2}sina+\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\left(sina.cos\frac{\pi}{3}+cosa.sin\frac{\pi}{3}\right)=2sin\left(a+\frac{\pi}{3}\right)\)
\(=2cos\left(\frac{\pi}{2}-a-\frac{\pi}{3}\right)=2cos\left(\frac{\pi}{6}-a\right)=2cos\left(a-\frac{\pi}{6}\right)\)
A={1;-1;2;-2;3;-3;6;-6}
B={1;-1;2;-2;3;-3;6;-6;9;-9;18;-18}
Vì các phần tử của tập hợp A đều thuộc tập hợp B nên: \(A\subset B\)
n chia hết cho 3 => n =3k (k ∈Z)
n(n+1) =3k (3k+1)
nếu k le ; k =2t+1 (t ∈Z)
3k (3k+1) =3(2t+1 )[ (3.(2t+1) +1 ] =3(2t+1 )[6t+3 +1) =3.(2t+1 )[6t+4)
=3(2t+1 ).2.(3t+2) =6(2t+1 ) (3t+2) chia hết cho 6
nếu k chẵn ; k =2t (t ∈Z)
3k (3k+1) =6t (3k+1 ] = chia hết cho 6
=> n(n+1) chia hết cho 6 nếu n chia hết cho 3=> dpcm
ếu nn chia hết cho 33 thì n = 3kn=3k với k \in \mathbb{N}k∈N.
Xét k=2mk=2m thì n = 6mn=6m suy ra n(n+1) = 6m(6m+1)n(n+1)=6m(6m+1) chia hết cho 66.
Xét k = 2m+1k=2m+1 thì n = 3(2m+1) = 6m+3n=3(2m+1)=6m+3.
Suy ra n(n+1) = (6m+3)(6m+4) = 3.(2m+1).2(3m+2) = 6.(2m+1).(3m+2)n(n+1)=(6m+3)(6m+4)=3.(2m+1).2(3m+2)=6.(2m+1).(3m+2) chia hết cho 66.
Lời giải:
Ta luôn có \(B,G,M,H\) thẳng hàng.
Vì $H$ đối xứng với $B$ qua $G$ nên $BG=GH$; mà theo tính chất trọng tâm tam giác thì \(GM=\frac{1}{2}BG\) \(\Rightarrow GM=\frac{1}{2}GH\). Do đó $M$ là trung điểm của $GH$
\(\Rightarrow \overrightarrow{MH}=\overrightarrow{GM}\) (1)
Ta có:
\(\left\{\begin{matrix} \overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{AM}\\ \overrightarrow{GM}=\overrightarrow{GC}+\overrightarrow{CM}\end{matrix}\right.\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{GC}+(\overrightarrow{AM}+\overrightarrow{CM})\)
Mà \(\overrightarrow{AM}+\overrightarrow{CM}=0\) do $M$ là trung điểm $AC$
\(\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GA}+\overrightarrow{AC}=2\overrightarrow{GA}+\overrightarrow{AC}\)
\(\Leftrightarrow 2\overrightarrow{GM}=2(\overrightarrow {GB}+\overrightarrow{BA})+\overrightarrow{AC}=2\overrightarrow{GB}+\overrightarrow{AC}-2\overrightarrow{AB}\)
Mà \(MG=\frac{1}{2}BG\) (cmt) do đó \(\overrightarrow{GM}=\frac{1}{2}\overrightarrow{BG}=-\frac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow 2\overrightarrow {GM}=-4\overrightarrow{GM}+\overrightarrow{AC}-2\overrightarrow{AB}\)
\(\Leftrightarrow 6\overrightarrow{GM}=\overrightarrow{AC}-2\overrightarrow{AB}\Leftrightarrow \overrightarrow{GM}=\frac{1}{6}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\) (2)
Từ \((1),(2)\Rightarrow \overrightarrow{MH}=\frac{1}{6}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
N=\(\sqrt{3+2\sqrt{2}}\)+\(\sqrt{6-4\sqrt{2}}\)
=\(\sqrt{1+2\sqrt{2}+2}\)+\(\sqrt{4-2.2\sqrt{2}+2}\)
=\(\sqrt{\left(1+\sqrt{2}\right)^2}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)
=1+\(\sqrt{2}\)+2-\(\sqrt{2}\)=3
Ta sử dụng thuyết tương đối hẹp:
Khi đi với v = v ánh sáng
=>theo lý thuyết,khi chiếu ánh sáng,ta và ánh sáng có v bằng nhau.Nhưng ánh sáng lại nhanh hơn ta 1 khoảng bằng v ánh sáng.
Ở đây, ta sử dụng chúng làm bài tập này:
6-3=3
Nhưng vì thuyết tương đối hẹp ở ^
6-3=6
wao đỉnh của chóp