Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5n^3+15n^2+10n\)
\(=x\left(x+1\right)\left(x+2\right)\)
Ta có : \(x;x+1;x+2\)là 3 số tự nhiên liên tiếp
=> \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 ; 3 ; 6 => \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 30 ( đpcm )
\(A=5n^3+15n^2+10n\)
\(=5n^3+5n^2+10n^2+10n\)
\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)
\(=\left(n+1\right)\left(5n^2+10n\right)\)
\(=5n\left(n+1\right)\left(n+2\right)\)
do \(n;n+1;n+2\)là 3 số nguyên liên tiếp
\(\Rightarrow n;n+1;n+2\)chia hết cho 6
\(\Rightarrow A\)chia hết cho 5 và 6
mà 5 và 6 là 2 số nguyên tố cùng nhau
\(\Rightarrow A\)chia hết cho 30 (dpcm)
Chúc pn hk tốt ^-^
\(5n^3+15n^2+10n\)
\(=\left(5n^3+5n^2\right)+\left(10n^2+10n\right)\)
\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)
\(=n\left(n+1\right)\left(5n+10\right)\)
\(=n\left(n+1\right)\left(n+2\right).5\)
Vì \(n\left(n+1\right)\left(n+2\right)\)là tích 3 số tự nhiên liên tiếp nên chia hết cho 6; tức tích \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 6.
Tích \(n\left(n+1\right)\left(n+2\right).5\) thừa số 5 nên chia hết cho 5.
Mà ƯCLN ( 5;6) = 1 nên \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 5.6 = 30
Vậy \(5n^3+15n^2+10n\)chia hết cho 30
Ta có: n^5 - n = n (n^4 -1 )
=n (n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2 - 4 +5)
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30
và n(n-1)(n+1)5 chia hết cho 30
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30
hay n^5-n chia hết cho 30
Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n
=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n)
5n (n+1).(n+2)
do n (n=1) (n+2)chia hết cho 6
suy ra Achia hết cho 30(n thuộc z)
5n^3 + 15n^2 +10n
=(5n^3 + 15n^2+ 10n)
= 30n^6 chia hết cho 30
Ta có : 5n3+15n2+10n
=5n(n2+3n+2)
Ta thấy : 5 chia hết cho 30
Hay : 5n chia hết cho 30
Vậy đpcm
a: \(\Rightarrow x^3-2x^2+3x^2-6x-5x+10+n-10⋮x-2\)
=>n-10=0
=>n=10
b: \(A=5n\left(n^2+3n+2\right)=5n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là 3 số liên tiếp
nên n(n+1)(n+2) chia hết cho 3!=6
=>A chia hết cho 30
Ta có :
\(5n^3+15n^2+10\)
= \(5n.\left(n^2+3n+2\right)\)
= \(5n.\left(n^2+n+2n+2\right)\)
=\(5n.\left(n.\left(n+1\right)+2.\left(n+1\right)\right)\)
=5n.\(\left(n+1\right).\left(n+2\right)\)
Vì n.(n+1).(n+2) lac tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n.(n+1).(n+2) chia hết cho 6
=> 5.(n+1).(n+2) chia hết cho 30
Hay \(5n^3+15n^2+10n\) chia hết cho 30
\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)\)
\(=5n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
hay \(5n\left(n+1\right)\left(n+2\right)⋮30\)
Trước tiên bn nên phân tích đa thức thành nhân tử để dễ dàng chứng minh hơn
Ta có: \(A=5n^3+15n^2+10n=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)=\left(n+1\right)\left(5n^2+10n\right)\)\(=5.n\left(n+1\right)\left(n+2\right)\)
Do \(n\left(n+1\right)\left(n+2\right)⋮6\) \((\forall n\in Z)\) (bn tự cm)
\(\Rightarrow A\) \(⋮30\left(\forall n\in Z\right)\)
thiếu nhé
vì UCLN(5,6)=1 nên A chia hết cho 5.6=30