\(5^{27}< 2^{63}< 5^{28}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

Ta có : \(\begin{cases}5^{27}=5^{3.9}=\left(5^3\right)^9=125^9\\2^{63}=2^{7.9}=\left(2^7\right)^9=128^9\end{cases}\)

Vì 1259 < 1289  => 527 < 263        (1) 

\(\begin{cases}5^{28}=5^{4.7}=\left(5^4\right)^7=625^7\\2^{63}=2^{7.9}=\left(2^9\right)^7=512^7\end{cases}\)

Vì 6257 > 5127  nên 528 > 263                  ( 2 ) 

Từ ( 1 ) , ( 2) ta có : 527 < 263 < 528 ( đpcm )

11 tháng 2 2022

Ta có:

 

5^ 27 = 5^ 3.9 = (5 ^3 ) 9 = 125 ^9 <128^ 9 = 2 ^7.9 = (2 ^7 ) 9 = 2 ^63

 

suy ra: 5 ^27 <2 ^63 (1)

 

lại có;2 ^63 <2^ 64 = 2 ^16,4 = (2 ^16 ) 4 = 65536 ^4 <78125 ^4 = 5 ^7.4 = (5 ^7 ) 4 = 5 ^28

 

suy ra: 2 ^63 <2 ^64 <5 ^28

 

suy ra: 2 ^63 <5 ^28 (2)

 

từ (1) và (2) ta

 

5 ^27 <2 ^63 <5 ^28

 

suy ra: (ĐPCM)

22 tháng 1 2018

\(\left(2^{2.5}\right)^{24}< 2^{63}< \left(2^{2.5}\right)^{28}\)

\(=2^{60}< 2^{63}< 2^{70}\)

2 tháng 10 2020

1. 

a) \(3^{23}< 5^{15}\)

b) \(127^{23}< 128^{23}=\left(2^7\right)^{23}=2^{161}\)

\(513^{18}>512^{18}=\left(2^9\right)^{18}=2^{162}\)

Vì \(162>161\Rightarrow2^{161}< 2^{162}\Rightarrow127^{23}< 513^{18}\)

2 tháng 10 2020

2. Ta có: 

\(5^{27}=5^{3.9}=\left(5^3\right)^9=125^9< 128^9=2^{7.9}=\left(2^7\right)^9=2^{63}\)

\(\Rightarrow5^{27}< 2^{63}\left(1\right)\)

Lại có: \(2^{63}< 2^{64}=2^{16.4}=\left(2^{16}\right)^4=65536^4< 78125^4=5^{7.4}=\left(5^7\right)^4=5^{28}\)

\(\Rightarrow2^{63}< 2^{64}< 5^{28}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ 1 và 2 => đpcm

25 tháng 2 2018

5^27=5^(3×9)

2^63=2^(7×9)

5^28=5^(7×4)

Mình phân tích  thôi rồi cậu tự làm nhé. Cạn kiệt chất sáng rồi

14 tháng 7 2017

a, Ta có:

\(\frac{1}{2^3}< \frac{1}{1\cdot2\cdot3};\frac{1}{3^3}< \frac{1}{2\cdot3\cdot4};\frac{1}{4^3}< \frac{1}{3\cdot4\cdot5};...;\frac{1}{n^3}< \frac{1}{\left[n-1\right]n\left[n+1\right]}\)

\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{3^3}+...+\frac{1}{n^3}< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)

Đặt \(A'=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)

\(\Rightarrow\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{\left[n-1\right].n}-\frac{1}{n\left[n+1\right]}\)

\(\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{n\left[n+1\right]}=\frac{1}{2}-\frac{1}{n\left[n+1\right]}=\frac{1}{4}-\frac{1}{2n\left[n+1\right]}< \frac{1}{4}\)

Vậy \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}< \frac{1}{4}\Leftrightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}< \frac{1}{4}\)

b,

\(C=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}=1+\frac{1}{3}+1+\frac{1}{3^2}+1+\frac{1}{3^3}+...+1+\frac{1}{3^{98}}\)

\(=\left[1+1+1+...+1\right]+\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

Đặt \(C'=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3C'=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\)

\(\Rightarrow3C'-C'=\left[1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\right]-\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=1-\frac{1}{3^{98}}\)

\(\Rightarrow C'=\frac{1-\frac{1}{3^{98}}}{2}< 1\)

\(\Rightarrow98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}< 98+1=99< 100\)

\(\Rightarrow\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)

c,

\(D=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{39}}\)

\(4D=5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\)

\(4D-D=\left[5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\right]-\left[\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}+\frac{5}{4^{39}}\right]\)

\(3D=5-\frac{5}{4^{39}}\Leftrightarrow D=\frac{5-\frac{5}{4^{39}}}{3}< \frac{5}{3}\)

Vậy:...........

AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA

8 tháng 3 2016

Mới học lớp 5

26 tháng 8 2023

527 = (53)9 = 1259 < 1289 = (27)9 = 263

263 = (29)7 = 5127 < 6257 = (54)7 = 528

4 tháng 5 2017

Ta có :

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét :

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

5 tháng 9 2017

cái qq gì

25 tháng 4 2019


Ta có:

\(\frac{1}{2}< 6\)

\(\frac{1}{3}< 6\)

\(...\)

\(\frac{1}{63}< 6\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)

\(\Rightarrow A< 6\left(dpcm\right)\)

\(#Jen\)

Trao đổi nếu cần