K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

chứng minh 263 lớn hơn 527 và nhỏ hơn 528

 

21 tháng 10 2016

ta có :

527 = 53.9 = ( 53 )9 = 1259 < 1289 = 27.9 = ( 27 ) 9 = 263

=> 527 < 263 ( 1 )

lại có : 263 < 264 = 216.4 = ( 216 )4 = 655364 < 781254 = 57.4 = ( 57 ) 4 = 528 

=> 263 < 264 < 528

=> 263 < 528 ( 2 )

từ ( 1 ) và ( 2 ) ta thấy :

527 < 263 < 528 

( đpcm )

13 tháng 10 2021

Nguyễn Đức Minh Triết ơi, hãy nhập câu hỏi của bạn vào đây...

19 tháng 2 2016

Ta có: \(5^{27}=\left(5^3\right)^9=125^9\)

          \(2^{63}=\left(2^7\right)^9=128^9\)

Mà \(128^9>125^9\)

=> \(5^{27}<2^{63}\)  (1)

Ta có: \(5^{28}=\left(5^4\right)^7=625^7\)

          \(2^{63}=\left(2^9\right)^7=512^7\)

Mà \(512^7<625^7\)

=> \(2^{63}<5^{28}\)  (2)

Từ (1) và (2):

=> \(5^{27}<2^{63}<5^{28}\left(đpcm\right)\)

527=(53)9=1259<1289=(27)9=263   (1)

263=(29)7=5127<6257=(54)7=528   (2)

từ (1) và (2) =>đpcm

26 tháng 4 2019

\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)

\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(\Rightarrow S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow S< 5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow S< 5\left(1-\frac{1}{100}\right)< 5.1=5\)

Vậy S < 5 (đpcm)

26 tháng 4 2019

\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)

\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(\Rightarrow S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(\Rightarrow S>5\left(\frac{101}{202}-\frac{2}{202}\right)\)

\(\Rightarrow S>5.\frac{99}{202}=\frac{495}{202}>2\)

Vậy S > 2 ( đpcm)

4 tháng 5 2018

\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

Nên B<\(\dfrac{1}{4}\)

B=\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\)

Nên B>\(\dfrac{1}{6}\)

15 tháng 4 2018

Ta có : 

\(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{5}{10}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{4}{10}=\frac{2}{5}\left(1\right)\)

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{9}=\frac{8}{9}\left(2\right)\)

Từ ( 1 ) , ( 2 ) => ĐPCM 

Chúc bạn học tốt !!! 

15 tháng 4 2018

Đề sai bạn nhé : 

Đề đúng : 

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)

CM :  \(\frac{2}{5}< A< \frac{8}{9}\)