K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

Bài làm:

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

23 tháng 8 2020

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

                                           \(=-\left(2x+1\right)^2-1\)

    Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)

              \(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)

              \(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )

b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

        \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

        \(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)

    Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )

6 tháng 7 2019

Bài 1:

a) \(ay-ax-2x+2y\)

\(=-a\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(-a-2\right)\)

b) \(5ax-7by-7ay+5bx\)

\(=5x\left(a+b\right)-7y\left(a+b\right)\)

\(=\left(a+b\right)\left(5x-7y\right)\)

c) \(4x^2-9x+5\)

\(=4x^2-4x-5x+5\)

\(=4x\left(x-1\right)-5\left(x-1\right)\)

\(=\left(x-1\right)\left(4x-5\right)\)

d) \(x^2-8x+15\)

\(=x^2-3x-5x+15\)

\(=x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x-5\right)\)

Bài 2:

a) \(x^2+x+\frac{1}{2}\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\forall x\)

b) \(x^2+5x+7\)

\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{3}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)

c) \(2x^2-3x+9\)

\(=2\left(x^2-\frac{3}{2}x+\frac{9}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{63}{16}\right)\)

\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{63}{16}\right]\)

\(=2\left(x-\frac{3}{4}\right)^2+\frac{63}{8}>0\forall x\)

6 tháng 7 2019

Bài 1: Phân tích đa thức thành nhân tử.

a, ay - ax - 2x + 2y

=a(y-x)+2(y-x)=(y-x)(a+2

b, 5ax - 7by - 7ay + 5bx

=5x(a+b)-7y(b+a)=(a+b)(5x-7y)

c, 4x^2 - 9x + 5

=4x2-4x-5x+5=4x(x-1)-5(x-1)=(x-1)(4x-5)

d, x^2 - 8x + 15

=x2-3x-5x+15=x(x-3)-5(x-3)=(x-3)(x-5)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

8 tháng 10 2020

A = ( x + y )( x + 2y )( x + 3y )( x + 4y ) + y4

= [ ( x + y )( x + 4y ) ][ ( x + 2y )( x + 3y ) ] + y4

= ( x2 + 5xy + 4y2 )( x2 + 5xy + 6y2 ) + y4 (1)

Đặt t = x2 + 5xy + 5y2

(1) <=> ( t - y2 )( t + y2 ) + y4

       = t2 - y4 + y4

       = t2 = ( x2 + 5xy + 5y2 )2

Vì x, y nguyên => x2 nguyên ; 5xy nguyên ; 5y2 nguyên

=> x2 + 5xy + 5y2 nguyên

=> ( x2 + 5xy + 5y2 )2 là một số chính phương

=> đpcm

8 tháng 10 2020

A = ( x + y )( x + 2y )( x + 3y )( x + 4y ) + y4 

=> A = ( x+ 5xy + 4y2 ) ( x+ 5xy + 6y2 ) + y4

Đặt a = x+ 5xy + 5y2 , pt trở thành :

A = ( a - y2 ) ( a + y2 ) + y4

=> A = t2 - y4 + y4 = t2 = ( x+ 5xy + 5y2 )2 là SCP

Vậy A là SCP

13 tháng 10 2018

Bài 1:

Ta có:

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Ta có:

\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)

\(\Rightarrow4x-x^2-5< 0\)