K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

undefined

18 tháng 9 2019

4x2 - 8x + 7

= (2x)2 - 2.2x.2 + 22 - 4 + 7

= (2x - 2)2 + 3

Vì (2x - 2)2 ≥ 0 ∀ x ⇒ (2x - 2)2 + 3 ≥ 3 ∀ x

Vậy (2x - 2)2 + 3 > 0 hay 4x2 - 8x + 7 > 0

23 tháng 9 2018

\(4x^2-8x+7\)

\(=\left(2x\right)^2-2\cdot2x\cdot2+2^2+3\)

\(=\left(2x-2\right)^2+3\ge3\forall x>0\forall x\left(đpcm\right)\)

P.s: kí hiệu \(\forall x\)là " với mọi x "

12 tháng 9 2017

1)

Ta có: \(x^2-4x+5=x^2-4x+4+1=\left(x+2\right)^2+1\ge1>0\left(đpcm\right)\)

2)

Ta có:\(-x^2+8x-17=-x^2+8x-16-1=-\left(x^2-8x+16\right)-1=-\left(x-4\right)^2-1\le-1< 0\)

27 tháng 8 2020

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

4 tháng 9 2016

4x2 - 8x + 5 >0 

(2x)2 - 2. 2x.2 + 22 +1

(2x-2)2+1

Vì ( 2x-2) \(\ge\)0 mọi giá trị x => ( 2x-2)+1>0 với mọi giá trị x

Vậy 4x2 - 8x + 5 > 0 với mọi giá trị của x

4 tháng 9 2016

ta có 4x^2 - 8x + 5 = (2x)^2 - 2*2x *2  + 4 +1 = (2x - 2)^2 + 1 

do  (2x - 2)^2 >= 0 vs mọi x nên  (2x - 2)^2 + 1 > 0 với mọi x

2 tháng 7 2017

Ta có:

x^2-8x+17=x^2-8x+16+1

=(x-4)^2+1

Vì (x-4)^4>=0 với mọi x

=>(x-4)^2+1>=1

mà 1>0=>(x-4)^2+1>0 với mọi x

Hay x^2-8x+17>0 với mọi x

12 tháng 9 2017

 a, x(x-1)(x+1)(x+2)=24 
[x(x+1)]*[(x-1)(x+2)]=24 
(x^2+x)*(x^2+x-2)=24 
đặt t=x^2+x;ta đc 
t*(t-2)=24 
t^2-2t=24 
t^2-2t+1=25 
(t-1)^2=5^2 
(t-1)^2-5^2=0 
((t-6)(t+4)=0 
t=6 hoặc t= -4 
với t=6 
thì x^2+x=6 <=> (x+1/2)^2 = 25/4 <=> (x+1/2)^2 = (5/2)^2 <=> (x+1/2)^2 - (5/2)^2 =0 
đến đây lại áp dụng HĐT thứ 3 giống như khi tìm t lúc nãy là ra 
với t= -4 em tự làm 
b, 2x(8x-1)^2 (4x-1)=9 <=> (8x-1)^2*(8x^2-2x)=9 
<=> (64x^2-16x+1)*(8x^2-2x)=9 
đặt t=(8x^2-2x) => 64x^2-16x =8t 
ta đc: (8t+1)*t=9 <=> 8t^2+t-9 = 0 <=> (t-1)(8t+9)=0 
c, (21/x^2-4x+10)- x^2+4x-6=0 <=> 21/x^2 - x^2 +4 =0 
đảt t=x^2 (t#0) 
ta đc: 21/t - t + 4 = 0 
quy đồng đc: 21-t^2+4t = 0 (với t # 0) 
<=> -(t-2)^2 + 25 =0 <=> 5^2 - (t-2)^2 = 0 
d, 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

P/s: Thay bằng a,b,c, cho dễ hiểu nha. Tham khảo nhé   ♥ ♥ ♥

15 tháng 9 2017

.camon❤

24 tháng 4 2020

Cảm ơn bạn nhé

Bài 2: 

a: =>(4x-1)2=0

=>4x-1=0

hay x=1/4

b: =>(x+4)(x-2)=0

=>x=-4 hoặc x=2

c: =>x2+2x+1+y2+2y+1=0

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2=0\)

=>x=-1và y=-1

2 tháng 7 2018

Ta có : 

\(4x^2+4x+2>0\)

\(\Leftrightarrow\)\(\left(4x^2+4x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left[\left(2x\right)^2+2.2x.1+1^2\right]+1>0\)

\(\Leftrightarrow\)\(\left(2x+1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy \(4x^2+4x+2>0\)

Chúc bạn học tốt ~ 

2 tháng 7 2018

thank bạn nha