Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT holder cho n bộ 3 số:
\(\left(\sum\dfrac{b^nc^n}{b+c}\right)\left[\sum\left(b+c\right)\right]\left(1+1+1\right)..\left(1+1+1\right)\ge\left(ab+bc+ca\right)^n\)
\(\Leftrightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^n}{3^{n-2}.2.\left(a+b+c\right)}\ge\dfrac{3^{n-2}.3abc\left(a+b+c\right)}{3^{n-2}.2.\left(a+b+c\right)}=\dfrac{3}{2}\)
#Hint:(\(\left\{{}\begin{matrix}ab+bc+ca\ge3\\\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\end{matrix}\right.\))
BĐT holder thường dùng:
\(\left(a_1^m+a_2^m+...+a_k^m\right)\left(b_1^m+b_2^m+...+b_k^m\right)...\left(c_1^m+...+c_k^m\right)\ge\left(a_1b_1...c_1+a_2.b_2...c_2+...+a_k.b_k...c_k\right)^m\)
trong đó VT có m thừa số từ a đến c
Áp dụng BĐT Cô-si cho 3 số dương ta có:
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)
Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)
Theo BĐT Cô - si ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)
(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))
Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)
\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)
\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)
\(\left(2\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)
\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)
\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)
Từ (1) , (2) và (3)
\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)
Chúc bạn học tốt !!!
a,b dể tự làm nha
c)ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+2ab+b^2-2ab-2ab\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) mà a+b=1
\(\Rightarrow1\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)
lại có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\) mà \(ab\le\frac{1}{4}\)
tahy vào có \(a^2+b^2\ge2\times\frac{1}{4}\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(dpcm\right)\)
Sử dụng bất đẳng thức Bunhiacopski ta có :
\(\left(a+b+c\right)^2\le\left(a^2+2\right)\left[1+\frac{\left(b+c\right)^2}{2}\right]\)
Tiếp theo ta chứng minh \(3\left[1+\frac{\left(b+c\right)^2}{2}\right]\le\left(b^2+2\right)\left(c^2+2\right)\)
Thật vậy, \(bpt\Leftrightarrow6+3b^2+3c^2+6bc\le2b^2c^2+4b^2+4c^2+8\)
\(\Leftrightarrow b^2+c^2+2b^2c^2-6bc+2\ge0\)
\(\Leftrightarrow\left(b^2-bc+c^2\right)+2\left(bc-1\right)^2\ge0\) (Đúng)
Vậy thì \(3\left(a+b+c\right)^2\le\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\) (đpcm)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\((a^2+1)[1+(b+c)^2]\geq (a+b+c)^2\)
Do đó ta chỉ cần chỉ ra rằng
\(4(a^2+1)(b^2+1)(c^2+1)\geq 3(a^2+1)[1+(b+c)^2]\)
\(\Leftrightarrow 4(b^2+1)(c^2+1)\geq 3[1+(b+c)^2]\)
\(\Leftrightarrow 4b^2c^2+1+b^2+c^2\geq 6bc\)
\(\Leftrightarrow (2bc-1)^2+(b-c)^2\geq 0\) ( luôn đúng)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{2}}\)
Thank you!!!