![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
link tham khảo
ccaau hỏi của ng duy mạnh
link : https://olm.vn/hoi-dap/detail/60197622644.html
hok tót
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)⋮128\)(1)
Vì a,b lẻ nên \(a^2+ab+b^2\)lẻ
\(\Rightarrow a^2+ab+b^2\)không chia hết cho 128 (2)
Từ (1) và (2) suy ra \(a-b⋮128\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(P=3^3\left(123^3-73^3\right)\)
\(=3\cdot9\cdot\left(123-73\right)\cdot A=1350\cdot A\cdot3⋮1350\)
b: \(=4^3\left(93^4+32^4\right)\)
\(=4^3\left(93+32\right)\cdot A=125\cdot64\cdot A=8000\cdot A⋮8000\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
1)
Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)
\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)
\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)
Do đó \(A\vdots 405\) (đpcm)
2)
Ta thấy : \(12^{2}\equiv 11\pmod {133}\)
\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)
\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)
\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)
Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)
3)
Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)
Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)
Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)
Do đó ta có đpcm.