K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

Hiển nhiên \(3^{2014}>1\Rightarrow4^{3^{2014}}>4>3\)

Ta có: \(4\equiv1\left(mod3\right)\Rightarrow4^{3^{2014}}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{3^{2014}}-1⋮3\)

Hay \(4^{3^{2014}}-1\) là hợp số

18 tháng 12 2016

tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha

21 tháng 12 2016

Bài này trước tiên ta phải đi chứng minh công thức:

                      \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 Xong áp dụng là ra thui.
 

21 tháng 2 2020

n là số tự nhiên lớn hơn 1 nên n có dạng \(n=2k\) hoặc \(n=2k+1\) với k là
số tự nhiên lớn hơn 0.

- Với \(n=2k\), ta có \(n^4+4^n=\left(2k\right)^4+4^{2k}\) lớn hơn 2 và chia hết cho 2. Do đó \(n^4+4^n\)là hợp số 

- Với n = 2k+1 ta có :
\(n^4+4^n=n^4+4^{2k}.4=n^4+\left(2.4^k\right)^2=\left(n^2+2.4^k\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2.4^k-2.n.2^k\right)\left(n^2+2.4^k+2.n.2^k\right)\)

\(=\left[\left(n-2^k\right)^2+4^k\right]\left[\left(n+2^k\right)^2+4^k\right]\)

Mỗi thừa số đều lớn hơn hoặc bằng 2. Vậy n4 + 4n là hợp sô

Chúc bạn học tốt !!!

31 tháng 12 2015

m^2-n^2=(m+n)(m-n) 
...Nhưng vì m^2-n^2 là số nguyên tố nên trong 2 thừa số, thừa số nhỏ hơn phải bằng 1, tức m-n=1.Vậy m và n là 2 số tự nhiên liên tiếp 

cho tich