Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha
Bài này trước tiên ta phải đi chứng minh công thức:
\(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Xong áp dụng là ra thui.
n là số tự nhiên lớn hơn 1 nên n có dạng \(n=2k\) hoặc \(n=2k+1\) với k là
số tự nhiên lớn hơn 0.
- Với \(n=2k\), ta có \(n^4+4^n=\left(2k\right)^4+4^{2k}\) lớn hơn 2 và chia hết cho 2. Do đó \(n^4+4^n\)là hợp số
- Với n = 2k+1 ta có :
\(n^4+4^n=n^4+4^{2k}.4=n^4+\left(2.4^k\right)^2=\left(n^2+2.4^k\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2.4^k-2.n.2^k\right)\left(n^2+2.4^k+2.n.2^k\right)\)
\(=\left[\left(n-2^k\right)^2+4^k\right]\left[\left(n+2^k\right)^2+4^k\right]\)
Mỗi thừa số đều lớn hơn hoặc bằng 2. Vậy n4 + 4n là hợp sô
Chúc bạn học tốt !!!
m^2-n^2=(m+n)(m-n)
...Nhưng vì m^2-n^2 là số nguyên tố nên trong 2 thừa số, thừa số nhỏ hơn phải bằng 1, tức m-n=1.Vậy m và n là 2 số tự nhiên liên tiếp
cho tich
Hiển nhiên \(3^{2014}>1\Rightarrow4^{3^{2014}}>4>3\)
Ta có: \(4\equiv1\left(mod3\right)\Rightarrow4^{3^{2014}}\equiv1\left(mod3\right)\)
\(\Rightarrow4^{3^{2014}}-1⋮3\)
Hay \(4^{3^{2014}}-1\) là hợp số