K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3x^2+1\ge1>0\forall x\)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

23 tháng 6 2018

có  3x^2 + 2x + 4 = 2x^2 + x^2 + 2x +1 +3
                            = 2x^2 +3 + (x+1)^2
mà x^2 >=0 với mọi x
=> 2x^2 >=0 với mọi x
lại có (x+1)^2 >= 0 với mọi x
Suy ra 2x^2 + 3 + (x+1)^2 > 0 với mọi x ( đpcm )

24 tháng 6 2018

                 \(3x^2+2x+4>0\)

\(\Leftrightarrow\)\(2x^2+x^2+2x+\frac{1}{4}+\frac{15}{4}>0\)

\(\Leftrightarrow\)\(\left(x^2+2x+\frac{1}{4}\right)+2x^2+\frac{15}{4}>0\)

\(\Leftrightarrow\) \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{15}{4}>0\)

BĐt cuối cùng luôn đúng nên ta có đpcm

24 tháng 6 2019

\(3x^2-4x+50\)

\(=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+\frac{146}{3}\)

\(=3\left(x-\frac{2}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}>0\) (đpcm)

26 tháng 6 2019

bạn làm rõ hơn tí đi được không