\(3^{300}+5^{200}\)chia hết cho 13

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)

30 tháng 7 2018

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0   \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}

b) ta có 92n+1+1 = (92). 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0   \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}

cho mik mik giải nốt bài 2 cho

29 tháng 10 2020

LEU LEU KO

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

21 tháng 10 2016

các bạn lượt qu trả lơi minh nhé mình đang cần gấp

21 tháng 10 2016

CÓ VẺ KHÓ ĐẤY BN