Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2^4n+1 có chữ số tận cùng luôn là 2 Do đó 2^4n+1 +3 chia hết cho 5 b,7^4n _____________________1_____7^4n -1 luôn __________5
Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5
Vì 16n có số tận cùng là 6; =>16n.2 có số tận cùng là 2
81n có số tận cùng là 1
=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n
Chứng minh chia hết cho 2:
Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)
Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)
Theo Fecma vì 11 là số nguyên tố nên
\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)
Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)
\(\Rightarrow2^{4n+1}=10k+2\)
Kết hợp với (2) ta được
\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)
Tương tự ta có:
\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)
Ta lại có:
\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10l+3\)
Kết hợp với (4) ta được
\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)
Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)
Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)
\(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\Rightarrow4S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}+......-\dfrac{1}{2^{2002}}\Rightarrow4S+S=5S=1-\dfrac{1}{2^{2004}}< 1\Rightarrow S< 0,2\left(\text{đpcm}\right)\)
a) Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=k\)
\(\Rightarrow k=\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{k}{9}\)
Tương tự :\(\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}=\frac{k}{9}\)
Vậy ..........
Đề sai nha bn:
Sửa đề:\(3^{2^{4n+1}}+2^{3^{4n+1}}+5⋮22\)
Theo định lý Fermat ta có:
\(2^{10}=1\left(mod11\right)\)(= là dấu đồng dư nha)
\(3^{10}=1\left(mod11\right)\)
Ta tìm dư trong phép chia \(2^{4n+1};3^{4n+1}\)cho 10
Mặt khác:
\(2^{4n+1}=2.16^n=2\left(mod10\right)\)
\(\Rightarrow2^{4n+1}=10k+2\)
Tương tự:
\(3^{4n+1}=10h+3\)
\(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}=3^{10k+2}+2^{10h+3}+5=\left(3^{10}\right)^k,9+\left(2^{10}\right)^h.8+5=9+8+5=0\left(mod22\right)\)
Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:
$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên
Do đó $A$ chẵn hay $A\vdots 2(*)$
Mặt khác:
$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên
$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$
Và:
$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$
do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên
$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$
Do đó:
$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$
Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)