Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(19^{120}-1\)
\(=\left(18+1\right)^{120}-1\)
\(=\left(\left(18+1\right)^{60}\right)^2-1\)
\(=\left(\left(18+1\right)^2+1\right)\left(\left(18+1\right)^2-1\right)\)
\(=\left(\left(180+1\right)^2+1\right)\left(180+1\right)\left(18-1\right)\)
Ta thấy cả 3 tích đều có 18 nên => Tổng của chúng chia hết cho 18 Hay \(19^{120}-1\)chia hết cho 18
Câu a và câu b bài 2 xem Câu hỏi tương tự
Bài 2 câu c :
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 )
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0
=> Số tận cùng của A = 0.
Bài 1 để nghiên cứu
ta không quan tâm đến số mũ (tại vì cả ba đều cùng số mũ là 2017)
vì 2016+2015+2009 bằng 6040 mà 6040 lại chia hết cho 10
suy ra 2016^2017+2015^2017+2009^2017 chia hết cho 10 (điều cần chứng minh)
\(2016^{2017}\)có tận cùng =6
\(2015^{2017}\)có tận cùng =5
\(2009^{2017}\)có tận cùng =9
(6+5+9)=20=> A chia hết cho 10
{lập luận @ .. không quan tâm đến mũ là sai? bạn thử thay số là số chẵn xem xe biết}
10^2017+10^2016+10^2015
=10^2015.(10^2+10+1)=10^2015.111
=10^2014.10.111=10^2014.2.5.111=10^2014.2.555 chia hết cho 555
10^2017 + 10^2016 + 10^2015
= 10^2015(10^2+10+1)
= 10^2015.111
= 10^2014.10.111
= 10^2014.2.5.111
= 10^2014.2.555
mà 555 chia hết cho 555
<=> 10^2014.2.555 chia hết 555
vậy( 10^2017 +- 10^2016 + 10^2015) chia hết cho 555