Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Tìm GTNN
B=|x-2022|+|x-1|>=|x-2022+1-x|=2021
Dấu = xảy ra khi 1<=x<=2022
b: C=(3-3^2+3^3)-3^3(3-3^2+3^3)+...-3^21(3-3^2+3^3)
=21(1-3^3+3^6-...-3^21) chia hết cho 21
C=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+...+3^20(3-3^2+3^3-3^4)
=-60(1+3^4+...+3^20) chia hết cho 60
=>A chia hết cho BCNN(21;60)=420
số hạng cuối của B phải là 3^1992 mới đúng
a, nhóm 3 số hạng liền nhau thì ta có
B=(3+3^5+3^9) +...+ [3^n+3^(n+4)+3^(n+5)] +...+ (3^1984+3^1988+3^1992)
xét số hạng tổng quát: 3^n+3^(n+4)+3^(n+5)= 3^n .(1+3^4+3^8)=
=3^n . (3^3-1)(3^3+1)(3^6+1)/(3^4-1)
=3^n . 26 .(3^3+1)(3^6+1)/(3^4-1)
vậy B chia hết cho 26, hay B chia hết cho 13
\(S=5+5^2+5^3+.............+5^{2004}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+..........+\left(5^{2001}+5^{2004}\right)\) (\(1007\) nhóm)
\(\Leftrightarrow S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2001}\left(1+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+............+5^{2001}.126\)
\(\Leftrightarrow S=126\left(5+5^2+...........+5^{2001}\right)⋮126\)
\(\Leftrightarrow S⋮126\rightarrowđpcm\)
\(S=5+5^2+5^3+5^4+...+5^{2004}\\ =\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2001}+5^{2003}\right)+\left(5^{2002}+5^{2004}\right)\\ =5\cdot\left(1+5^2\right)+5^2\cdot\left(1+5^2\right)+...+5^{2001}\cdot\left(1+5^2\right)+5^{2002}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)\\ =26\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)⋮26\)
Vậy \(S⋮26\)
\(M=3^0+3^1+3^2+...+3^{2023}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2020}+3^{2021}+3^{2022}+3^{2023}\right)\)
\(=40+3^4\left(1+3+3^2+3^3\right)+...+3^{2020}\left(1+3+3^2+3^3\right)\)
\(=40+3^4\cdot40+...+3^{2020}\cdot40\)
\(=40\left(1+3^4+...+3^{2020}\right)\)
\(=20\cdot2\left(1+3^4+...+3^{2020}\right)⋮20\)
Ta có:
7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N
8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N
\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
\(\Leftrightarrow\left(\frac{a}{c}\right)^{\frac{3}{4}}+\left(\frac{b}{c}\right)^{\frac{3}{4}}>1\)
Do \(\left\{{}\begin{matrix}0< \frac{a}{c}< 1\\0< \frac{b}{c}< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(\frac{a}{c}\right)^{\frac{3}{4}}>\frac{a}{c}\\\left(\frac{b}{c}\right)^{\frac{3}{4}}>\frac{b}{c}\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{c}\right)^{\frac{3}{4}}+\left(\frac{b}{c}\right)^{\frac{3}{4}}>\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}>1\) (đpcm)