K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow4E< 3\)

\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)

30 tháng 4 2017

Bài 1:

Ta có: \(3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^5.120+...+3^{96}.120\)

\(=120.\left(1+3^5+.....+3^{96}\right)\)

\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)

31 tháng 3 2019

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\)

\(\Leftrightarrow3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)

\(\Leftrightarrow3E-E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{101}{3^{101}}\)

\(\Leftrightarrow2E=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{100}{3^{101}}\)

Đặt \(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Leftrightarrow3S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Leftrightarrow3S-S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)

\(\Leftrightarrow2S=1-\frac{1}{3^{100}}\)

\(\Leftrightarrow S=\left(1-\frac{1}{3^{100}}\right)\div2\)

\(\Leftrightarrow2E=1+\left(1-\frac{1}{3^{100}}\right)\div2-\frac{101}{3^{101}}\)

\(\Leftrightarrow2E=1+\frac{1}{2}-\frac{1}{3^{100}.2}-\frac{101}{3^{101}}\)

\(\Leftrightarrow2E=\frac{3}{2}-\frac{1}{3^{100}.2}-\frac{101}{3^{101}}< \frac{3}{2}\)

\(\Leftrightarrow E< \frac{3}{4}\left(đpcm\right)\)

15 tháng 7 2016

@Đỗ Nguyễn Như Bình \(\frac{2}{3^2}\) hay là \(\frac{2^2}{3}\) hay là \(\left(\frac{2}{3}\right)^2\) vậy em???????????

27 tháng 4 2015

ta có : 1+1+1+1+1+1+1+1x0

=> 1x8 = 8

mà kòn x vs 0 nữa :

=> tổng đó =0

=> 0<3/4

=> E<3/4

28 tháng 2 2020

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

28 tháng 2 2020

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

12 tháng 5 2016

Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)

                \(=\left(3+3^2+3^3+3^4+3^5\right)\)