Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2005 se có tận cùng là 5
Vì các số 2 mũ luôn có số tận cùng lần lượt là 2;4;6;8
ta có:
2005:4=501 dư 1 suy ra tận cùng là chữ số 2 : 5+2=7
Vì 2005 không chia hết cho 3 hay 9
Mà các số tận cùng là 7 và 5
suy ra 2 số trên là 2 số nguyên tố cùng nhau
Xét p=2 => p2+2 là hợp số( loại)
Xét p=3=>.... thỏa mãn
Xét p>3
Ta có: \(p\equiv\pm1\left(mod3\right)\)
\(\Rightarrow p^2\equiv1\left(mod3\right)\)
\(\Rightarrow p^2+2\equiv3\left(mod3\right)\)
\(\Rightarrow p^2+2⋮3\)
Mà p2+2 >3 nên là hợp số
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
+ Nếu p = 2 thì p2 + 8 là số chẵn, không là số nguyên tố (trái với đề bài)
+ Nếu p = 3 thì p2 + 8 = 32 + 8 = 17; p2 + 2 = 32 + 2 = 11 đều là số nguyên tố (đpcm)
+ Nếu p > 3, do p nguyên tố nên p không chia hết cho 3
=> p2 không chia hết cho 3 => p2 chia 3 dư 1
=> p2 + 8 chia hết cho 3, không là số nguyên tố (trái với đề bài)
Vậy ta có điều phải chứng minh