K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Ta có:

\(21^{10}-1\)

\(=\left(21^5\right)^2-1^2\)

\(=\left(21^5+1\right)\left(21^5-1\right)\)

Có \(21^5+1=B\left(2\right)\Rightarrow\)Đặt \(21^5+1=2k\)

\(\Rightarrow21^{10}-1=2k\left(21^5-1\right)=2k.\left(...00\right)\)chia hết cho 200

Vậy ...

30 tháng 10 2016

Có:

212  đồng dư 41(mod200)

(212)5 đồng dư 415 (mod200) đồng dư 1(mod200)

hay 2110 đồng dư 1(mod200)

=>2110-1 đồng dư 1-1(mod200)

=>2110 chia hết chon200

21 tháng 8 2018

nếu bạn là hs chuyên toán thì mình giải theo cách này

ta thấy 200=8.25 (phân tích thừa số nguyên tố)

ta cần chứng minh 2110-1 đông  dư 0 (mod8)   ta co 212    đồng dư 1 (mod 8) <=>  2110-1 đồng dư o mod 8  (1)

                             2110-1 dong du 0 (mod 25)   ta có 215 đồng dư 1 (mod 25)   <=>   2110-1 đồng dư 0 mod 25  (2)

từ (1) và (2)

tao suy ra..............

12 tháng 10 2017

\(21^{10}-1\)

\(=\left(20+1\right)^{10}-1\)

\(=20^{10}+1^{10}-1\)

\(=20^{10}+\left(1-1\right)\)

\(=\left(20^2\right)^5\)

\(=400^5\)

\(=\left(200.2\right)^5\)

\(=200^5.2^5⋮200\left(đpcm\right)\)

12 tháng 10 2017

21^10 -1

=(21^5)^2-1^2

=(21^5+1)(21^5-1)

Có 21^5+1=B suy rađặt 21^5+1=2k

suy ra 21^10=2k(21^5-1)=2k

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Phần a)

Sử dụng bổ đề \(x^{mn}-1\vdots x^m-1\) với mọi \(m,n \in\mathbb{N}\)

Chứng minh bổ đề:

Thật vậy, theo hằng đẳng thức đáng nhớ:

\(x^{mn}-1=(x^m)^n-1^n=(x^m-1)[(x^m)^{n-1}+(x^m)^{n-2}+...+x^m+1]\vdots x^m-1\)

Bổ đề đc chứng minh.

-----------------------------------

Ta có:

\(x^{400}+x^{200}+1=x^{396}.x^4+x^{198}.x^2+1\)

\(=x^4(x^{396}-1)+x^2(x^{198}-1)+(x^4+x^2+1)\)

Áp dụng bổ đề trên vào bài toán kết hợp với \(x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1\) ta suy ra:

\(x^{396}-1=x^{6.66}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^{198}-1=x^{6.33}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^4+x^2+1\vdots x^4+x^2+1\) (hiển nhiên)

Do đó: \(x^{400}+x^{200}+1\vdots x^4+x^2+1\)

(đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Phần b)

\(F(x)=x^{1970}+x^{1930}+x^{1890}=x^{1890}(x^{80}+x^{40}+1)\)

Thấy rằng:

\(x^{80}+x^{40}+1=(x^{40}+1)^2-x^{40}=(x^{40}+1)^2-(x^{20})^2\)

\(=(x^{40}+1-x^{20})(x^{40}+1+x^{20})\)

Mà: \(x^{40}+1+x^{20}=(x^{20}+1)^2-x^{20}=(x^{20}+1)^2-(x^{10})^2\)

\(=(x^{20}+1-x^{10})(x^{20}+1+x^{10})\vdots x^{20}+x^{10}+1\)

Do đó:

\(x^{80}+x^{40}+1\vdots x^{20}+x^{10}+1\)

25 tháng 2 2018

Ta có :

\(21^{30}+39^{21}=\left(21^2\right)^{15}+\left(39^2\right)^{10}.39\)

\(=\left(9.45+36\right)^{15}+\left(33.45+36\right)^{20}.39\)

\(=BS45+36^{15}+BS45+36^{20}.39\)

\(=BS45+36^{15}\left(36^5+19\right)\)

\(36^5+19⋮45\) nên

\(BS45+36^{15}\left(36^5+19\right)=BS45+36^{15}.45a=BS45⋮45\)(đpcm)