K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

\(A=\left(2+2^2\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(A=2.\left(1+2\right)+...+2^{2003}.\left(1+2\right)\)

\(A=2.3+...+2^{2003}.3\)

=> A chia hết cho 3

Các cái còn lại tương tự

chứng minh chia hết cho 7 thì gộp 3 cái lại 1

chia hết cho 15 là gộp 4 cái lại

 

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

19 tháng 11 2015

A =   (2004 + 2004) + ( 2004+ 20044)+  (20045 + 20046)  +............................+ (20048 + 200410)
A = 2004 ( 1 + 2004 ) + 20043 ( 1 +2004 ) + .... + 20048 ( 1+ 2004 )
A = 2004.2005 + 20043.2005 +....+20048.2005
A = 2005.(  2004 + 2004+ 2004+ 2004+  20045 + 20046  +............................+ 20048 + 200410   )
Vậy A chia hết cho 2005

19 tháng 11 2015

có sai đề ở chỗ 2004^8+2004^10 ko bn

25 tháng 11 2018

1,Chứng minh chia hết cho 3

A=2+2^2+2^3+2^4+2^5+2^6+2^7+...+2^2004

A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2003+2^2004)

A=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^2003(1+2)

A=2.3+2^3.3+2^5.3+..+2^2003.3

A=(2+2^3+2^5+...+2^2003).3 chia hết cho 3 (đpcm)

chứng minh chia hết cho 7

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2002+2^2003+2^2004)

A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2002(1+2+2^2)

A=2.7+2^4.7+...+2^2002.7

A=(2+2^4+..+2^2002).7 chia hết cho 7 (Đpcm)<mik sẽ làm tiếp>

25 tháng 11 2018

LÀM TÍP ĐI BN,

28 tháng 4 2015

=> A = (20+21+22+23+24)+(25+26+27+28+29)+...+(22000+22001+22002+22003+22004)

    A = (20+21+22+23+24)+25.(20+21+22+23+24)+...+22000.(20+21+22+23+24)

    A=            31             + 25 . 31                    + ...+ 22000.31

    A= 31. (1+25+....+22000) chia hết cho 31

28 tháng 4 2015

>>>Việt à bạn nhầm to rồi. Cái bài này bọn tớ làm đầy. Cả lớp tớ ai cũng coi như muỗi hết đó