K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{3}-\dfrac{1}{20}=\dfrac{17}{60}< \dfrac{1}{2}\)

8 tháng 4 2022

\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{19.20}< \dfrac{1}{2}\)

=> \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}< \dfrac{1}{2}\)

=> \(\dfrac{1}{3}-\dfrac{1}{20}< \dfrac{1}{2}\)

11 tháng 5 2016

1/2.3 + 1/3.4 + 1/4.5 + ... + 1/19.20

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20

= 1/2 - 1/20

= 9/20

k đii

11 tháng 5 2016

1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20

1/2 - 1/20

9/20

đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)

Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)

\(=3-\frac{3}{20}=\frac{57}{20}\)

\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)

5 tháng 7 2017

Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A

\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)

\(A=\frac{1}{2}.\frac{19}{20}\)

\(A=\frac{19}{40}\)

\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)

\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)

\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)

\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(B=\left[3.\left(\frac{19}{20}\right)\right]\)

\(B=\frac{57}{20}\)

Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)

\(=-\frac{95}{40}=-\frac{19}{8}\)

Nếu đúng thì k nha

9 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\) (đpcm)

9 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)

Giữ nguyên phân số \(\frac{49}{50}\)

Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)

\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)

2 tháng 9 2023

\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\cdot\cdot\cdot+\dfrac{1}{18\cdot19}+\dfrac{1}{19\cdot20}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\cdot\cdot\cdot+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=\dfrac{1}{2}-\dfrac{1}{20}\)

\(=\dfrac{9}{20}\)

#\(Urushi\)

2 tháng 9 2023

Công thức: 

\(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)

2 tháng 5 2019

Ta chia A ra lam 2 khoang la tu B=1/201+1/202+...+1/250 (50 so hang)va tu C=1/251+1/252+...+1/300 (50 so hang)

ta thay 1/201=1/201, 1/202<1/201,....1/250<1/201

cong  ca 2 ve cua 50 bat dang thuc cung chieu ta duoc B<50.1/201=> B<50/201

ta cung thay 1/251=1/251,1/252<1/251,....1/300<1/251

cong 2 ve cua 50 bat dang thuc cung chieu ta lai duoc C<50.1/251=> C<50/251

Ta thay A= B+C

suy ra A< 50/201+50/251=> A<0,448

ma tha thay 0,448<9/20

SUY RA A<9/20 (dpcm)

Thoi mik ko lay tien cua ban dau

Co gang len! Chuc ban hoc tot!

2 tháng 5 2019

Really ? 

Có chắc là có 50K thật không ?? 

26 tháng 4 2023

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)

26 tháng 4 2023

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+....+\dfrac{1}{19\cdot20}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{20}\)

\(A=1-\dfrac{1}{20}\)

\(A=\dfrac{19}{20}\)

 

16 tháng 3 2016

Chứng tỏ rằng :

a) 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4+.....+1 phần 49.50 <1

b)1 phần 22 + 1 phần 32 + 1 phần 42+.....+1 phần 20082 + 1 phần 20092 <1

Toán lớp 6

ai tích mình tích lại