K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VT
0
TN
6 tháng 5 2016
ta có:1/2!<1
2/3!<1
......
......
2015/2016!<1
=>A=1/2!+2/3!+3/4!+......+2015/2016! luôn luôn <1
Ta cần chứng minh:\(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Với \(n=1\Rightarrow1=1\)(đúng)
Giả sử bài toán đúng với \(n=k\left(n\inℕ^∗\right)\) thì ta có:
\(1+2^3+3^3+...+k^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)
Ta cần chứng minh đề bài đúng với \(n=k+1\) tức là:
\(1^3+2^3+3^3+....+n^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)
Đặt \(A_{k+1}=1^3+2^3+...+\left(k+1\right)^3\)
\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\) [theo (1)]
\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
\(\Rightarrow\left(2\right)\) đúng
\(\Rightarrow\left(1\right)\) đúng.
Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{n^2\cdot\left(n+1\right)^2}{4}\)
\(\Rightarrow1^3+2^3+...+n^3=\frac{n^2\cdot\left(n+1\right)^2}{4}\left(đpcm\right)\)