Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Ta có \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
.....................
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + ... + 1/100^2 < 1/2
1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + ... + 1/100.100 < 1/2.3+ 1/3.4 + 1/4 .5 + 1/5.6 + .. + 1/99.100
1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + ... + 1/100.100 < 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/99 - 1/100
1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + ... + 1/100.100 < 1/2 - 1/100 suy ra 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + ... + 1/100^2 < 1/2
Chúc bn hok tốt
Ta có:\(\frac{1}{5.6}\)<\(\frac{1}{5^2}<\frac{1}{4.5}\)
\(\frac{1}{6.7}\) \(\frac{1}{6^2}<\frac{1}{5.6}\)....
\(\frac{1}{100,101}<\frac{1}{100^2}<\frac{1}{99.100}\)
=>\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}<\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
<=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}<\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{5}-\frac{1}{101}
=\(\frac{1}{6}
Đặt :
A=1/5^2+1/6^2+...+1/100^2
Ta có:
A<1/4.5+1/5.6+...+1/99.100=1/4-1/5+1/5-1/6+...+1/99-1/100=1/4-1/100<1/4
Đúng thì k nha!
Ta có:
A>1/5.6+1/6.7+...+1/100.101=1/5-1/6+1/6-1/7+....+1/100+1/101>1/6
ta thấy:
A<\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{100.101}=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}< 1\)
mà 1<2
=>A<2
vậy.......................
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ta có\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}\)
cộng các vế trái và vế phải với nhau ta được
\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
Ta có tổng vế phải là
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\left(dpcm\right)\)