![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài đúng : Chứng minh tích (n+1)(n+2)(n+3)(n+4) + 1 là số chính phương với n là số tự nhiên.
Ta có : \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left[\left(n+1\right)\left(n+4\right)\right].\left[\left(n+2\right)\left(n+3\right)\right]+1\)
\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=\left(n^2+5n+4\right)\left[\left(n^2+5n+4\right)+2\right]+1\)
\(=\left(n^2+5n+4\right)^2+2.\left(n^2+5n+4\right)+1=\left(n^2+5n+4+1\right)^2=\left(n^2+5n+5\right)^2\)
là một số chính phương.
![](https://rs.olm.vn/images/avt/0.png?1311)
Không ý t nói là nếu \(\hept{\begin{cases}a^2=0,5\\b^2=0,5\\c^2=2\end{cases}}\)
Thì \(a\left(a-1\right)2=\sqrt{0,5}\left(\sqrt{0,5}-1\right)2=-0,414\ge0\)là sai ấy
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>3\)
Ta thấy 0 < a,b,c < 2
Ta có:
\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\) ⇔ a( a−1)2 \(\ge\)0
Tương tự với các cái tương tự, ta được:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\left(\text{đ}pcm\right)\)
Dấu = khi a=b=c=1
đúng không ?
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại)
Do đó $p=3k+2$.
Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)
???????????? what !