Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
10^6 - 5^7 = 5^6 . 2^6 - 5^6. 5 = 5^6 . ( 2^6- 5 ) = 5^6 . 59
mà 5^6. 59 chia hết cho 59 => 10^6 - 5^7 chia hết cho 59
( ĐPCM)
\(10^6-5^7\)=\(\left(2\cdot5\right)^6-5^7\)
=\(2^6\cdot5^6-5^7\)
=\(5^6\left(2^6-5\right)\)
=\(5^6\cdot59\)
Vì 59 chia hết cho 59 => 5^6 x 59 chia hết cho 59
=> 10^6 - 5^7 chia hết cho 59
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5
= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))
= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )
= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20
= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5
4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21
= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )
= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )
= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84
= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21
b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6
= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )
= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )
= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30
= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8
a, 36^36 - 9^10
có 36 chia hết cho 9 => 36^36 chia hết cho 9
9 chia hết cho 9 => 9^10 chia hết cho 9
=> 36^36 - 9^10 chia hết cho 9 (1)
36^36 = ....6
9^10 = (9^2)^5 = (....1)^5 = ....1
=> 36^36 - 9^10 = ...6 - ...1 = ...5 chia hết cho 5 (2)
mà (5; 9) = 1 (3)
(1)(2)(3) => 36^36 - 9^10 chia hết cho 45
b, Ta có : 10^6 - 5^7 = 5^6 .2^6 - 5^6 . 5 = 5^6 ( 2^6 - 5 ) = 5^ 6 .59 chia hết cho 59
Ta có
\(10^6-5^7=5^6\left(2^6-5\right)\)
\(=5^6\left(64-5\right)=5^6.59\)
=> 10^6 - 5^7 chia hết cho 59
106 - 57 = 1000000 - 78125 = 921875 : 59 = 15625