Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{2}{3}+x=-\frac{4}{5}\)
\(x=\left(-\frac{4}{5}\right)-\frac{2}{3}\)
\(x=-1\frac{7}{15}\)
Vậy \(x=-1\frac{7}{15}\)
2) \(\frac{2}{5}-x=-\frac{1}{3}\)
\(x=\frac{2}{5}-\left(-\frac{1}{3}\right)\)
\(x=\frac{11}{15}\)
Vậy \(x=\frac{11}{15}\)
3) \(1-\frac{x}{3}=1\frac{1}{2}\)
\(\frac{x}{3}=1-1\frac{1}{2}\)
\(\frac{x}{3}=-\frac{1}{2}\)
\(\Rightarrow x=\frac{\left(-1\right)\cdot3}{2}\)
\(x=-1\frac{1}{2}\)
4) \(1-\left(\frac{2x}{3}+2\right)=-1\)
\(\frac{2x}{3}+2=1-\left(-1\right)\)
\(\frac{2x}{3}+2=2\)
\(\frac{2x}{3}=2-2\)
\(\frac{2x}{3}=0\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
B = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{\left(2.3.4.5\right).\left(2.3.4.5\right)}{\left(1.2.3.4\right).\left(3.4.5.6\right)}=\frac{5.2}{1.6}=\frac{5}{3}\)
C = \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{74}{305}\)
Bài làm:
1) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}=\frac{49}{50}\)
2) \(B=\frac{2^2.3^2.4^2.5^2}{1.2.3^2.4^2.5.6}=\frac{2.5}{6}=\frac{5}{3}\)
3) \(C=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(C=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(C=\frac{3}{2}\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{61-59}{59.61}\right)\)
\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(C=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)
1. \(\frac{25}{100}x+x-\frac{1}{5}x=\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{4}x+x-\frac{1}{5}x=\frac{1}{5}\)
\(\Leftrightarrow\left(\frac{1}{4}+1-\frac{1}{5}\right)x=\frac{1}{5}\)
\(\Leftrightarrow\frac{21}{20}x=\frac{1}{5}\)
\(\Leftrightarrow x=\frac{1}{5}:\frac{21}{20}\)
\(\Leftrightarrow x=\frac{4}{21}\)
giúp mik nha chiều này 6:00 mik nộp rồi
ai nhanh mik sẽ k cho 3 k
\(2\frac{3}{5}x-\frac{1}{7}=1\frac{9}{35}\)
\(\frac{13}{5}x=\frac{44}{35}+\frac{1}{7}\)
\(\frac{13}{5}x=\frac{7}{5}\)
\(x=\frac{7}{5}:\frac{13}{5}\\ x=\frac{7}{13}\)
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
Mấy câu trên dễ , bạn có thể tự làm được
Chứng minh \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< 1\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{10^2}=\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)
=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{1}-\frac{1}{10}\)
=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{9}{10}\)
Lại có : \(\frac{9}{10}< 1\)
=> \(A< \frac{9}{10}< 1\)
=> \(A< 1\left(đpcm\right)\)
câu 1 bó, câu 2 là 6