Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét thấy : \(x^4+y^4+z^4+t^4\ge2x^2y^2+2z^2t^2\ge4xyzt\)
Dấu " =" xảy ra khi \(x=y=z=t\)
Áp dụng :
\(a^4+a^4+b^4+c^4\ge4a^2bc\)
\(a^4+b^4+b^4+c^4\ge4ab^2c\)
\(a^4+b^4+c^4+c^4\ge4abc^2\)
\(\Rightarrow4\left(a^4+b^4+c^4\right)\ge4abc\left(a+b+c\right)\)
\(\Leftrightarrowđpcm\)
Dấu " = " xảy ra khi \(a=b=c\)
43^43=43^40.43^3=(43^4)^10.43^3
Vì (43^4)^10 có chữ số tận cùng là 1
Và 43^3 có chữ số tận cùng là 7
suy ra ......1x.....7=....7
17^17= 17^16.17=(17^4)^4.17
Vì (17^4)^4 có chữ số tận cùng là 1
Và 17 có chữ số tận cùng là 7
suy ra .....7-.....7=...0
suy ra 43^3-17^17=....0 chia hết cho 10
Vậy 43^43-17^17 chia hết cho 10
k nhé
Sử dụng phép đồng dư nhá bạn.
\(7\equiv7\)(mod 100)
\(7^3\equiv43\)(mod 10)
\(7^4=1\)(mod 10)
\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)
\(7^{40}.7^3\equiv1.43\equiv43\) (mod10)
Vậy .....................................
ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43
=> dpcm
a: \(3x^2+y^2+10x-2xy+26=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)
b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)
sửa thiếu
-0,7(43\(^{43}\)+17\(^{17}\))là một số nguyên