Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( 3n - 1 ; 2n - 1 )
⇒ 3n - 1 ⋮ d và 2n - 1 ⋮ d ⇒ 2.( 3n - 1 ) ⋮ d và 3.( 2n - 1 ) ⋮ d
⇒ [ 2.( 3n - 1 ) - 3.( 2n - 1 ) ] ⋮ d ⇒ [ ( 6n - 2 ) - ( 6n - 3 ) ] ⋮ d
⇒ 1 ⋮ d . Do đó : d = 1
Vì ƯC ( 3n - 1 ; 2n - 1 ) = 1 nên 3n - 1 ; 2n - 1 là nguyên tố cùng nhau
Vậy phân số 3n - 1 / 2n - 1 tối giản
Gọi d là ƯCLN(2n+1;3n+1)
\(\Rightarrow2n+1\) chia hết cho d
\(\Rightarrow3n+1\) chia hết cho d
\(\Rightarrow\left(2n+1\right)-\left(3n+1\right)\) chia hết cho d
\(\Rightarrow\left[3\left(2n+1\right)\right]-\left[2\left(3n+1\right)\right]\) chũng chia hết cho d
\(=\left[6n+3\right]-\left[6n+2\right]\)
\(=6n+3-6n-2\)
\(=\left(6n-6n\right)+\left(3-2\right)\)
\(=0+1=1\) chia hết cho d
Vậy 1 chia hết cho d nên => d chia hết cho 1;-1
=> ƯCLN(2n+1;3n+1)=1 (1)
từ \(\left(1\right)\Rightarrow\frac{2n+1}{3n+1}\) là phân số tối giản
Gọi UWCLN(2n + 1; 3n + 2) = d
Ta có :
2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d
Áp dụng công thức đồng dư, ta có :
6n + 4 - 6n - 3 = 1
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản vì có ước chung là 1
Phân số tối giản là phân số có ước chung lớn nhất của tử và mẫu là 1
Giải
Gọi ƯCLN (2n+1;3n+2) là d
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}}\)
\(\Rightarrow6n+3-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy p/s trên là phân số tối giản
Bài toán này thì chúng ta cần chứng minh A = 2n+1/3n+2 có ước chung lớn nhất bằng 1 ...
Gọi Ước chung lớn nhất của 2n + 1 và 3n + 2 là d
Ta có :
*2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 cũng chia hết cho d
*3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 cũng chia hết cho d
Áp dụng công thức đồng dư
=> 6n + 4 - (6n + 3) chia hết cho d
mà 6n + 4 - (6n + 3) = 1 chia hết cho d
vậy d = 1
=> 2n + 1/3n + 2 Là phân số tối giản
Gọi d là UWCLN của 2n+1 và 3n+1
=>2n+1 chia hết cho d
3n+1 chia hết cho d
Ta có: 2n+1=3(2n+1)=6n+3
3n+1=2(3n+1)=6n+2
=> 6n+3 - (6n+2) chia hết cho d
Vì: 6n+3 - (6n+2) =1
=>1 chia hết cho d
nên d=1
Vậy phân số\(\frac{2n+1}{3n+2}\)là phân số tối giản
Gọi d là ƯCLN ( 2n+1, 3n+2)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
Gọi d = ƯC (2n+1; 3n+1 )
Ta có : 2n+1 chia hết cho d và 3n+1 chia hết cho d
=> 3(2n+1) chia hết cho d và 2(3n+1) chia hết cho d
=> 3(2n+1)-2(3n+1) chia hết cho d
=> 6n+3-6n-2 chia hết cho d
=> 1 chia hết cho d
Hay d = \(\pm\)1
Vậy 2n+1/3n+1 là phân số tối giản
\(1.\)Gọi d là một ước chung của \(3n+1\)và \(4n+1\).Ta có :
\(3n+1⋮d;4n+1⋮d\)
\(=>4.\left(3n+1\right)⋮d;3.\left(4n+1\right)⋮d\)
\(=>12n+4-12n+3⋮d\)
\(=>1⋮d\)
\(=>d=1;d=-1\)
Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.
Bài 2 cũng làm tương tự như vậy bạn nhé!
1) Vì 3n+1/4n+1 là phân số tối giản
=> ƯCLN(3n+1,4n+1)=1
Gọi ƯCLN(3n+1,4n+1)=d
Ta có
3n+1 : d ; 4n+1 ; d => 4.(3n+1) : d ; 3.(4n+1) : d => 12n+4 : d ; 12n+3 : d
=> (12n+4) - (12n+3) : d
=> 1 : d => d = 1
Vậy với mọi giá trị của n thì 3n+1/4n+1 là phân số tối giản
2) Để 2n/2n+1 là phân số tối giản
=> ƯCLN (2n , 2n+1) = 1
Gọi ƯCLN (2n , 2n+1)=d
Ta có
2n : d ; 2n+1 : d => (2n+1) - (2n) : d
=> 1 : d
=> d = 1
Vậy với mọi giá trị của n thì 2n / 2n+1 là phân số tối giản