Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(b=\dfrac{-6c-5a}{4}\).
Ta cần cm \(b^2-4ac\ge0\Leftrightarrow\dfrac{\left(6c+5a\right)^2}{16}\ge4ac\Leftrightarrow36c^2+25a^2-4ac\ge0\Leftrightarrow\left(4a-c\right)^2+35c^2+9a^2\ge0\).(luôn đúng)
Cần điều kiện \(a;b;c\) có ít nhất 2 số khác 0
- Với \(a=0\Rightarrow x=-\frac{c}{b}\) mà \(6b+19c=0\Rightarrow-\frac{c}{b}=\frac{6}{19}\Rightarrow x=\frac{6}{19}>0\)
- Với \(c=0\Rightarrow2a+6b=0\Rightarrow-\frac{b}{a}=\frac{1}{3}\)
\(ax^2+bx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{b}{a}=\frac{1}{3}>0\end{matrix}\right.\)
- Với \(abc\ne0\)
\(2a+6b+19c=0\Rightarrow2\left(a+3b\right)=-19c\Rightarrow a+3b=-\frac{19}{2}c\)
Đặt \(f\left(x\right)=ax^2+bx+c\)
Ta có: \(f\left(0\right)=c\) ; \(f\left(\frac{1}{3}\right)=\frac{a}{9}+\frac{b}{3}+c\)
\(\Rightarrow f\left(0\right).f\left(\frac{1}{3}\right)=c\left(\frac{a}{9}+\frac{b}{3}+c\right)=\frac{1}{9}c\left(a+3b+9c\right)\)
\(=\frac{1}{9}c\left(-\frac{19}{2}c+9c\right)=-\frac{1}{18}c^2< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{1}{3}\right)\)
Vậy phương trình luôn có một nghiệm dương
a/ Đề không rõ ràng bạn
Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R
b/ Xét \(f\left(x\right)=x^3+3x^2-1\)
Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)
\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)
\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)
\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)
\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt
c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)
\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)
\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)
\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
d/ \(f\left(x\right)=5sin3x+x-10\)
\(f\left(0\right)=-10\)
\(f\left(4\pi\right)=4\pi-10\)
\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm
Có : \(m^2+m+1>0\) với mọi m
=> \(\left(m^2+m+1\right)x^4+2x-2=0\)là phương trình bậc 4 với mọi m
Đặt: \(f\left(x\right)=\left(m^2+m+1\right)x^4+2x-2\)
Ta có: \(f\left(0\right)=-2< 0\)với mọi m
\(f\left(1\right)=m^2+m+1>0\) với mọi m
=> Tồn tại \(a\in\left(0;1\right)\) sao cho \(f\left(a\right)=0\) với mọi m
=> Phương trình \(\left(m^2+m+1\right)x^4+2x-2=0\) có nghiệm thuộc ( 0; 1) với mọi m
=> Phương trình \(\left(m^2+m+1\right)x^4+2x-2\)=0 có nghiệm với mọi m.
Ở dòng thứ 6 bạn thêm 1 chút để chặt chẽ hơn:
Vì f(0). f(1) < 0 => tồn tại....
Đặt \(f\left(x\right)=x^3+ax^2-bx+c\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+ax^2-bx+c\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{a}{x}-\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại \(x=m>0\) đủ lớn sao cho \(f\left(m\right)>0\)
\(\lim\limits_{x\rightarrow-\infty}\left(x^3+ax^2-bx+c\right)=\lim\limits_{x\rightarrow-\infty}x^3\left(1-\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=-\infty\)
\(\Rightarrow\) Luôn tồn tại \(x=n< 0\) đủ nhỏ sao cho \(f\left(n\right)< 0\)
\(\Rightarrow f\left(m\right).f\left(n\right)< 0\Rightarrow f\left(x\right)=0\) luôn có nghiệm