Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chỉ cần xét biệt thức của phương trình \(x^2+ax+a^2-6=0\)
\(\Delta=a^2-4\left(a^2-6\right)=24-3a^2\)
Ta thấy \(\Delta< 0\Leftrightarrow-2\sqrt{2}< a< 2\sqrt{2}\left(1\right)\)
Ta thấy cả 3 nghiệm của phương trình \(a^3=6\left(a+1\right)\) đều thỏa mãn (1).
Vậy ta đã chứng minh xong.
Ta có: \(x^4+x^3+x^2+x+1=0\)
\(=\left(x^4+x^3\right)-\left(x^2+x\right)-1=0\)
Xét hai trường hợp
TH1: Với x = 0 ta có phương trình bằng 1 (vô nghiệm)
TH2: Với \(x\ne0\)ta có: \(x^4>x^3;x^2>x\) (1)
Và , nếu x là số dương thì (1) là điều đương nhiên
Nếu x là số âm thì \(x^4;x^2\)là số dương , còn \(x^3;x\)là số âm
Từ (1) ta thấy : \(x^4+x^3>0\); \(x^2+x>0\)
\(\Rightarrow\left(x^4+x^3\right)-\left(x^2+x\right)-1>0\)
Vậy phương trình : \(x^4+x^3+x^2+x+1=0\) vô nghiệm.
Bạn ấy chỉ đưa ra câu hỏi vậy thôi, mình biết là bạn ấy chưa học cái này đâu
\(\Delta=\left(2m-3\right)^2-4.\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9>0\)với mọi m
=> PT luôn có 2 nghiệm phân biệt với mọi m
Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).