K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

25 tháng 11 2023

7\(x^2\) - 24y2 = 41

Nếu \(x\) ⋮ 3 ⇒ 7\(x^2\) - 24y2 ⋮ 3 ⇒ 41 ⋮ 3 (vô lý loại)

Nếu \(x\) không chia hết cho 3

⇒ \(x^2\) = 3k + 1(theo tính chất của số chính phương số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)

Thay \(x^2\) = 3k + 1 vào biểu thức 7\(x^2\) - 24y2 ta có: 

    7.(3k + 1) - 24y2 = 41

⇒ 21k + 7 - 24y2 = 41

    21k - 24y2 = 41 - 7

    3.(7k - 8y2) = 34 ⇒ 34 ⋮ 3 (vô lý loại)

Vậy không có giá trị nguyên nào của \(x\) thỏa mãn phương trình hay phương trình đã cho không có nghiệm nguyên (đpcm)

 

 

 

 

23 tháng 4 2020

giúp mik với mn

8 tháng 9 2021

Con cai nit 💓💖❣💌💌💤

10 tháng 1 2021
pưn
13hdKybakkkkkqqkkkkkk8754063 
9 876496 9689789975890897
6789978897989789908900 89890978988
10 tháng 1 2021

\(\left(d_2\right):2x-y=-2\)                  \(\left(d_3\right)2x-2y=-4\)    

\(\Leftrightarrow\left(d_2\right):y=2x+2\)       \(\left(d_3\right):y=x+2\)

Hoành độ của giao điểm là No của 

     \(2x+2=x+2\)

\(\Leftrightarrow x=0\)

Thay vào pt d, ta có:

\(y=0+2=2\)

Vậy giao điểm của d2 và d3 là tại 

          A(0;2)

Để 3 đường đồng quy thì, thay A(0;2) hay x=0 ;y= 2 vào d 

\(4.m.0+\left(3m-5\right).2=5m+4\)

\(\Leftrightarrow6m-10=5m+4\)

\(\Leftrightarrow m=14\)

Vậy để 3 đường thẳng trên đồng quy thì  = 14

18 tháng 2 2021

Đầu tiên ta sẽ tìm tọa độ giao điểm của 2 đường thăng d1 và d2

G/s  \(M\left(x_0;y_0\right)\) là giao điểm của d1 và d2 nên khi đó:
\(\hept{\begin{cases}-y_0=-3\\2x_0+2y_0=2\end{cases}}\Rightarrow\hept{\begin{cases}x_0=-2\\y_0=3\end{cases}}\)

Vậy điểm M có tọa độ (-2;3)

Để 3 đường thẳng trên đồng quy thì d3 cũng phải đi qua điểm M

=> \(2m\cdot\left(-2\right)+\left(3m-5\right)\cdot3=4m+3\)

\(\Leftrightarrow-4m+9m-15=4m+3\)

\(\Leftrightarrow m=18\)

Vậy khi m = 18 thì 3 đường thẳng trên đồng quy