\(\dfrac{3n-2}{4n-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

Gọi \(d=ƯCLN\left(3n-2;4n-3\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(3n-2;4n-3\right)=1\)

\(\Leftrightarrow\dfrac{3n-2}{4n-3}\) tối giản

29 tháng 3 2018

Đặt 3n - 2 = a , 4n - 3 = b . Gọi ƯCLN (a,b) = D (kí hiệu (a,b) )

Vì phân số tối giản có ƯCLN của tử và mẫu 1 .

Vậy ta cần chứng minh : (a,b) = 1 .Ta tìm UCLN (a,b) bằng thuật tính Euclide. Ta có:

(3n - 2 ; 4n - 3 ) = (4n - 3 ; 2n) = (2n ;1) = 1 (đpcm)

27 tháng 2 2017

Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d

=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d 

=>12n-8 chia hết cho d và 12n-9 chia hết cho d 

=>(12n-8)-(12n-9) chia hết cho d 

=>1 chia hết cho d 

=>d=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản

27 tháng 2 2017

Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m

=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m

=>12n+3 chia hết cho m và 12n+2 chia hết cho m 

=>(12n+3)-(12n+2) chia hết cho m

=>1 chia hết cho m

=>m=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản

24 tháng 1 2018

a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

25 tháng 1 2018

, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d

⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d

⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d

⇒2⋮d⇒2⋮d

⇒d∈{1;2}⇒d∈{1;2}

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d

⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

22 tháng 2 2018

a, \(\frac{3n-2}{4n-3}\) 

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) là d .

\(\Rightarrow\) 3n - 2 ⋮ d

          4n - 3 ⋮ d 

\(\Rightarrow\) 4n - 3 + 3n - 2 ⋮ d

\(\Rightarrow\)( 12n - 9 )+ ( 12n - 8 ) ⋮ d

\(\Rightarrow\) ( 12n - 12n ) + ( 9 - 8 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1 .

\(\Rightarrow\) 4n - 3 và 3n - 2 là hai số nguyên tố cùng nhau . 

Vậy \(\frac{3n-2}{4n-3}\) là phân số tối giản .

b, \(\frac{4n+1}{6n+1}\) 

Gọi  ƯCLN ( 4n + 1 ; 6n + 1 ) là d .

\(\Rightarrow\) 4n + 1 ⋮ d 

         6n + 1 ⋮ d

\(\Rightarrow\) 4n + 1 - 6n + 1 ⋮ d

\(\Rightarrow\) ( 12n + 3 ) - ( 12n + 2 ) ⋮ d.

.\(\Rightarrow\) ( 12n - 12n ) + ( 3 - 2 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1

\(\Rightarrow\) 4n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .

Vậy \(\frac{4n+1}{6n+1}\) là phân số tối giản .

:)

Chúc bạn học tốt !

22 tháng 2 2018

a) Để phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản 

=> ƯCLN ( 3n - 2 ; 4n - 3 ) = 1

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) = d

=> 3n - 2 \(⋮\)d và 4n - 3 \(⋮\)d ( 1 )

Từ ( 1 ) 

=> 4 . ( 3n - 2 )  \(⋮\)d và 3 . ( 4n - 3 )  \(⋮\)

=> 12n - 8  \(⋮\)d và 12n - 9  \(⋮\)d  ( 2 )

Từ ( 2 )

=> ( 12n - 9 ) - ( 12n - 8 )  \(⋮\)

=> 1  \(⋮\)

=> d \(\in\)Ư ( 1 )

=> d = 1

=>  Phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản với mọi n \(\in\)\(ℕ^∗\)

14 tháng 4 2019

Bạn chọn vào câu tương tự của bạn trên OLM sẽ có bài tham khảo nha

=))) Mong bạn hiểu

Mik chưa bt làm nên cho bn coi bài của ngta =))

14 tháng 4 2019

a) Gọi (3n-2,4n-3) = d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

=>\(\left(12n-8\right)-\left(12n-9\right)⋮d\)

=>\(1⋮d\)

=>\(d=1\)=>\(\frac{3n-2}{4n-3}\)là phân số tối giản

b) Gọi  (4n+1,6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

=> \(\left(12n+3\right)-\left(12n+2\right)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> \(\frac{4n+1}{6n+1}\)là phân số tối giản

27 tháng 2 2017

đặt (3n-2,4n-3)=d

ta có: (3n-2)chia hết cho d, (4n-3)chia hết cho d 

=> (3n-2) - (4n-3) chia hết cho d

=> 4.(3n-2) - 3.(4n-2) chia hết cho d

= (12n-8) - (12n+9)=1chia het cho d=> d=1

vậy phân số đã cho là phân số tối giản

9 tháng 2 2017

https://olm.vn/hoi-dap

14 tháng 6 2017

a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)

+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản

b, tương tự

c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)

+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)

+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)

Mà : \(2n^2+3n⋮d\)

\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)

\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)

\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)

Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản

d, tương tự câu c

15 tháng 6 2017

Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé

Gọi d là UCLN(21n+4;14n+3)

\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(42n+8;42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n