\(\frac{n^3+2n}{n^4+3n^2+1}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2015

Gọi (n^3+2n ; n^4+3n^2+1) là d =>  n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d 

 => n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d 

do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d  hay n^2 +1 chia hết cho d (1)

=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d  

=>  (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)

Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d  hay 1 chia hết cho d  

Do đó  (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (Đ.P.C.M)

8 tháng 2 2015

Gọi (n^3+2n ; n^4+3n^2+1) là d =>  n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d 

 => n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d 

do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d  hay n^2 +1 chia hết cho d (1)

=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d  

=>  (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)

Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d  hay 1 chia hết cho d  

Do đó  (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra $\frac{n^3+2n}{n^4+3n^2+1}$n3+2nn4+3n2+1  là phân số tối giản (Đ.P.C.M)

 

2 tháng 7 2018

Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )

=> n3 + 2n \(⋮\)d  ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )

Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )

Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d

=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d

=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d

=> n2 + 1 \(⋮\)d ( * )

=> n2 . ( n+ 1 ) \(⋮\)d

=> n4 + n2 \(⋮\)d ( 4 )

Từ ( 3 ) và ( 4 ) => ( n+ 2n2 ) - ( n4 + 2n ) \(⋮\)d

=> n2 \(⋮\)d ( 5 )

Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

Vậy : phân số đã cho tối giản

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:

Giả sử phân số đã cho không tối giản.
Gọi $p$ là ước nguyên tố chung của của $n^3+2n, n^4+3n^2+1$

$\Rightarrow n^3+2n\vdots p$
$\Rightarrow n(n^2+2)\vdots p$

$\Rightarrow n\vdots p$ hoặc $n^2+2\vdots p$.

Nếu $n\vdots p$. Kết hợp với $n^4+3n^2+1\vdots p\Rightarrow 1\vdots p$

$\Rightarrow p=1$ (không tm vì $p$ là snt) 

Nếu $n^2+2\vdots p$.

Kết hợp với $n^4+3n^2+1\vdots p$

$\Rightarrow n^2(n^2+2)+(n^2+2)-1\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (không tm vì $p$ là snt)

Vậy điều giả sử không đúng.

$\Rightarrow$ phân số đã cho tối giản.

16 tháng 5 2020

a)  Gọi d là ƯCLN của n và n+1  ( d\(\in\)N* )

Ta có:  n \(⋮\)d  và  n+1 \(⋮\) d

\(\Rightarrow\)( n+1 ) -  n\(⋮\)  d

\(\Rightarrow\)\(⋮\) d

Mà d\(\in\)  N*  \(\rightarrow\)d = 1

ƯCLN ( n, n+1 )= 1

\(\Rightarrow\)n và n+1 là 2 số nguyê tố cùng nhau

\(\Rightarrow\)\(\frac{n}{n+1}\)là phân số tối giản với mọi n\(\in\)N*

20 tháng 1 2020

Gọi d là UCLN của cả tử và mẫu

Có: \(\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}7\left(18n+3\right)⋮d\\6\left(21n+7\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(126n+21\right)⋮d\\\left(126n+42\right)⋮d\end{cases}}\)

\(\Rightarrow\left(126n+42\right)-\left(126n+21\right)⋮d\)

\(\Rightarrow21⋮d\)

\(\Rightarrow d\in\left\{3;7\right\}\)

Xét: \(d=3\Rightarrow\left(21n+7\right)⋮3\left(loại\right)\)

Xét :\(d=7\Rightarrow\left(36n+6\right)⋮7\Rightarrow\left(35n+n+6\right)⋮7\)

\(\Rightarrow\left(n+6\right)⋮7\Rightarrow n-1=7k\Rightarrow n=7k+1\)

Vậy: Để \(\frac{18n+3}{21n+7}\) tối giản \(\Leftrightarrow n\ne7k+1\)

14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản

26 tháng 1 2019

Tham khảo nha : 

       Chứng minh rằng 2 phân số tối giản vs mọi số tự nhiên n :       

...p/s

29 tháng 4 2017

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

29 tháng 4 2017

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản