Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )
=> n3 + 2n \(⋮\)d ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )
Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )
Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d
=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d
=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d
=> n2 + 1 \(⋮\)d ( * )
=> n2 . ( n2 + 1 ) \(⋮\)d
=> n4 + n2 \(⋮\)d ( 4 )
Từ ( 3 ) và ( 4 ) => ( n4 + 2n2 ) - ( n4 + 2n ) \(⋮\)d
=> n2 \(⋮\)d ( 5 )
Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy : phân số đã cho tối giản
Lời giải:
Giả sử phân số đã cho không tối giản.
Gọi $p$ là ước nguyên tố chung của của $n^3+2n, n^4+3n^2+1$
$\Rightarrow n^3+2n\vdots p$
$\Rightarrow n(n^2+2)\vdots p$
$\Rightarrow n\vdots p$ hoặc $n^2+2\vdots p$.
Nếu $n\vdots p$. Kết hợp với $n^4+3n^2+1\vdots p\Rightarrow 1\vdots p$
$\Rightarrow p=1$ (không tm vì $p$ là snt)
Nếu $n^2+2\vdots p$.
Kết hợp với $n^4+3n^2+1\vdots p$
$\Rightarrow n^2(n^2+2)+(n^2+2)-1\vdots p$
$\Rightarrow 1\vdots p\Rightarrow p=1$ (không tm vì $p$ là snt)
Vậy điều giả sử không đúng.
$\Rightarrow$ phân số đã cho tối giản.
a) Gọi d là ƯCLN của n và n+1 ( d\(\in\)N* )
Ta có: n \(⋮\)d và n+1 \(⋮\) d
\(\Rightarrow\)( n+1 ) - n\(⋮\) d
\(\Rightarrow\)1 \(⋮\) d
Mà d\(\in\) N* \(\rightarrow\)d = 1
ƯCLN ( n, n+1 )= 1
\(\Rightarrow\)n và n+1 là 2 số nguyê tố cùng nhau
\(\Rightarrow\)\(\frac{n}{n+1}\)là phân số tối giản với mọi n\(\in\)N*
Gọi d là UCLN của cả tử và mẫu
Có: \(\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}7\left(18n+3\right)⋮d\\6\left(21n+7\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(126n+21\right)⋮d\\\left(126n+42\right)⋮d\end{cases}}\)
\(\Rightarrow\left(126n+42\right)-\left(126n+21\right)⋮d\)
\(\Rightarrow21⋮d\)
\(\Rightarrow d\in\left\{3;7\right\}\)
Xét: \(d=3\Rightarrow\left(21n+7\right)⋮3\left(loại\right)\)
Xét :\(d=7\Rightarrow\left(36n+6\right)⋮7\Rightarrow\left(35n+n+6\right)⋮7\)
\(\Rightarrow\left(n+6\right)⋮7\Rightarrow n-1=7k\Rightarrow n=7k+1\)
Vậy: Để \(\frac{18n+3}{21n+7}\) tối giản \(\Leftrightarrow n\ne7k+1\)
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
=> n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
=> (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d hay 1 chia hết cho d
Do đó (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (Đ.P.C.M)
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
=> n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
=> (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d hay 1 chia hết cho d
Do đó (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra $\frac{n^3+2n}{n^4+3n^2+1}$n3+2nn4+3n2+1 là phân số tối giản (Đ.P.C.M)