K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

tham khảo nhé

https://olm.vn/hoi-dap/detail/212469778815.html

Theo cách mình : 

Bạn chỉ việc chứng minh ƯCLN của nó bằng 1 , rồi suy ra phân số đó tối giảm . 

( Mình nghĩ là như vậy , sai thì thôi nha )

18 tháng 3 2019

thôi thì cũng cảm ơn bạn

28 tháng 3 2019

câu 1a hình như sai bạn ạ

mình thử lấy n=5 thì n+1/n-3 bằng 6/2 (ko tối giản)

28 tháng 3 2020

Gọi (2n+1,2n+3) là d. ĐK  : \(d\inℕ^∗\)

Ta có : (2n+1,2n+3)=d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\)(2n+3)-(2n+1)\(⋮\)d

\(\Rightarrow\)2\(⋮\)d

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà 2n+1 là số nguyên lẻ nên \(d=\pm1\)

\(\Rightarrow\left(2n+1,2n+3\right)=\pm1\)

\(\Rightarrow\)2n+1 và 2n+3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\)Phân số \(A=\frac{2n+1}{2n+3}\)tối giản với mọi số tự nhiên n  (đpcm)

20 tháng 7 2020

Gọi d là ước chung của 2n+5 và 2n+3

=> 2n+5 chia hết cho d và 2n+3 chia hết cho d

=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}

Do 2n+5 và 2n+3 lẻ => d lẻ => d=1

=> phân số trên tối giản với mọi n

21 tháng 7 2020

Cảm ơn bạn NGUYỄN NGỌC ANH MINH nhiều

4 tháng 4 2020

ví dụ là 1 số chẳn là 2 thi phấn số sẻ ra \(\frac{2}{2+1}\)bằng số liên tiếp ko chia được nêu trường hợp a là số lẻ là 3 thì cũng như vậy thui nha k đi

4 tháng 4 2020

Gọi d là ƯCLN của a,a+1

Ta có:\(a⋮d;a+1⋮d\)

\(\Leftrightarrow a+1-a⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

Vậy \(\frac{a}{a+1}\) là phân số tối giản

28 tháng 3 2020

Gọi d là ƯCLN (2n+1; 2n+3) \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

=> (2n+3)-(2n+1) \(⋮\)d

=> 2 \(⋮\)d

Mà d\(\inℕ^∗\)=> d={1;2}

Mà 2n+1 không chia hết cho 2

=> d=1

=> ƯCLN (2n+1;2n+3)=1

=> đpcm

28 tháng 3 2020

Cảm ơn bạn

Gọi ƯCLN(n+1,2n+1) là d

Có n+1\(⋮\)d

2n+1\(⋮\)d

\(\Rightarrow\)2(n+1)\(⋮\)d

2n+1\(⋮\)d

\(\Rightarrow\)2n+2\(⋮\)d

2n+1\(⋮\)d

\(\Rightarrow\)(2n+2)-(2n+1)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(1)={1}

Vì ƯCLN(n+1,2n+1)là 1

nên n+1/2n+1 là phân số tối giản

1 tháng 3 2020

Gọi ƯCLN(n+1, 2n+1) là d

suy ra n +1 chia hết cho d suy ra 2. (n+1) chia hết cho d suy ra 2n +2 chia hết cho d  (1)

       2n+1 chia hết cho d (2)

Từ (1) và (2) suy ra 2n+2- (2n+1) chia hết cho d

suy ra 2n+2-2n-1 chia hết cho d

suy ra 1 chia hết cho d

suy ra d=1

vậy phân số \(\frac{n+1}{2n+1}\)là phân số tối giản

21 tháng 7 2020

1) Ta có \(\frac{n}{n-4}=\frac{n-4+4}{n-4}=1-\frac{4}{n-4}\)

Vì \(1\inℤ\Rightarrow\frac{n}{n-4}\inℤ\Leftrightarrow\frac{-4}{n-4}\inℤ\Rightarrow-4⋮n-4\Rightarrow n-4\inƯ\left(-4\right)\)

=> \(n-4\in\left\{1;4-1;-4\right\}\)

=> \(n\in\left\{5;8;3;0\right\}\)

2) Gọi ƯCLN(n ; n + 1) = d

=> \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n ; n + 1 là 2 số nguyên tố cùng nhau

=> \(\frac{n}{n+1}\)là phân số tối giản 

3) ĐK \(x\ne-2\)

Ta có : \(\frac{2n-3}{n+2}=\frac{2n+4-7}{n+2}=\frac{2\left(n+2\right)-7}{n+2}=2-\frac{7}{n+2}\)

\(\frac{2n-3}{n+2}\)đạt giá trị nhỏ nhất khi \(\frac{7}{n+2}\)lớn nhất

=> n + 2 lớn nhất 

mà n thuộc Z

=> n + 2 = 7

=> n = 5

=>  GTNN của \(\frac{2n-3}{n+2}\text{ là }1\Leftrightarrow x=5\)

\(\frac{2n-3}{n+2}\)đạt giá trị lớn nhất khi \(\frac{7}{x+2}\)nhỏ nhất

=> x + 2 nhỏ nhất

mà x thuộc z

=> x + 2 = -1

=> x = - 3

=> GTLN của \(\frac{2n-3}{n+2}\text{ là }9\Leftrightarrow x=-3\)

1 tháng 4 2018

Đặt d là ƯCLN (2n+7,n+3)

    =>2n+7 chia hết cho d

          n+3 chia hết cho d nên 2n+6 chia hết cho d (2n+6=2*(n+3))

=>2n+7-(2n+6) chia hết cho d

                    1 chia hết cho d

Nên d=1

Suy ra 2n+7 và n+3 nguyên tố cùng nhau

Vậy 2n+7/n+3 là PS tối giản