Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo cách mình :
Bạn chỉ việc chứng minh ƯCLN của nó bằng 1 , rồi suy ra phân số đó tối giảm .
( Mình nghĩ là như vậy , sai thì thôi nha )
Gọi (2n+1,2n+3) là d. ĐK : \(d\inℕ^∗\)
Ta có : (2n+1,2n+3)=d
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\)(2n+3)-(2n+1)\(⋮\)d
\(\Rightarrow\)2\(⋮\)d
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà 2n+1 là số nguyên lẻ nên \(d=\pm1\)
\(\Rightarrow\left(2n+1,2n+3\right)=\pm1\)
\(\Rightarrow\)2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\)Phân số \(A=\frac{2n+1}{2n+3}\)tối giản với mọi số tự nhiên n (đpcm)
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n
ví dụ là 1 số chẳn là 2 thi phấn số sẻ ra \(\frac{2}{2+1}\)bằng số liên tiếp ko chia được nêu trường hợp a là số lẻ là 3 thì cũng như vậy thui nha k đi
Gọi d là ƯCLN của a,a+1
Ta có:\(a⋮d;a+1⋮d\)
\(\Leftrightarrow a+1-a⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy \(\frac{a}{a+1}\) là phân số tối giản
Gọi d là ƯCLN (2n+1; 2n+3) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
=> (2n+3)-(2n+1) \(⋮\)d
=> 2 \(⋮\)d
Mà d\(\inℕ^∗\)=> d={1;2}
Mà 2n+1 không chia hết cho 2
=> d=1
=> ƯCLN (2n+1;2n+3)=1
=> đpcm
Gọi ƯCLN(n+1,2n+1) là d
Có n+1\(⋮\)d
2n+1\(⋮\)d
\(\Rightarrow\)2(n+1)\(⋮\)d
2n+1\(⋮\)d
\(\Rightarrow\)2n+2\(⋮\)d
2n+1\(⋮\)d
\(\Rightarrow\)(2n+2)-(2n+1)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(1)={1}
Vì ƯCLN(n+1,2n+1)là 1
nên n+1/2n+1 là phân số tối giản
Gọi ƯCLN(n+1, 2n+1) là d
suy ra n +1 chia hết cho d suy ra 2. (n+1) chia hết cho d suy ra 2n +2 chia hết cho d (1)
2n+1 chia hết cho d (2)
Từ (1) và (2) suy ra 2n+2- (2n+1) chia hết cho d
suy ra 2n+2-2n-1 chia hết cho d
suy ra 1 chia hết cho d
suy ra d=1
vậy phân số \(\frac{n+1}{2n+1}\)là phân số tối giản
1) Ta có \(\frac{n}{n-4}=\frac{n-4+4}{n-4}=1-\frac{4}{n-4}\)
Vì \(1\inℤ\Rightarrow\frac{n}{n-4}\inℤ\Leftrightarrow\frac{-4}{n-4}\inℤ\Rightarrow-4⋮n-4\Rightarrow n-4\inƯ\left(-4\right)\)
=> \(n-4\in\left\{1;4-1;-4\right\}\)
=> \(n\in\left\{5;8;3;0\right\}\)
2) Gọi ƯCLN(n ; n + 1) = d
=> \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n ; n + 1 là 2 số nguyên tố cùng nhau
=> \(\frac{n}{n+1}\)là phân số tối giản
3) ĐK \(x\ne-2\)
Ta có : \(\frac{2n-3}{n+2}=\frac{2n+4-7}{n+2}=\frac{2\left(n+2\right)-7}{n+2}=2-\frac{7}{n+2}\)
\(\frac{2n-3}{n+2}\)đạt giá trị nhỏ nhất khi \(\frac{7}{n+2}\)lớn nhất
=> n + 2 lớn nhất
mà n thuộc Z
=> n + 2 = 7
=> n = 5
=> GTNN của \(\frac{2n-3}{n+2}\text{ là }1\Leftrightarrow x=5\)
\(\frac{2n-3}{n+2}\)đạt giá trị lớn nhất khi \(\frac{7}{x+2}\)nhỏ nhất
=> x + 2 nhỏ nhất
mà x thuộc z
=> x + 2 = -1
=> x = - 3
=> GTLN của \(\frac{2n-3}{n+2}\text{ là }9\Leftrightarrow x=-3\)
tham khảo nhé
https://olm.vn/hoi-dap/detail/212469778815.html