\(\frac{n.\left(n+2\right)}{n+1}\) tối giản


 


...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Gọi d là ƯCLN(15n+1,3n+1)

Hay 15n+1 chia hết cho d, 3n+1 chia hết cho d

Hay (15n+1-3n+1) chia hết cho d

Hay 12 chia hết cho d

Hay d thuộc ước của 12

Ư(12)={1;2;3;4;6;12}

Mà khi d=1 thì phân số trên sẽ không cùng chia hết cho một số bất kì nào nữa có nghĩa là khi đó d mới là phân số tối giản.

Mà d ở phân số trên có nhiều hơn 1 ước nên phân số trên không là phân số tối giản.

Ví dụ: nếu d=5 thì 15.5+1/3.5+1=76/16=19/4 chưa là phân số tối giản.

Kết luận:đề bài sai.

tk mình nha, mình rõ nhất

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

9 tháng 4 2017

gọi d là ước chung lớn nhất của 2n + 5 và n+3

<=> 2n+5 \(⋮\)d và n+3 \(⋮\)d

mà 2n+5 \(⋮\)d => 2(n+3) \(⋮\)d <=> 2n+6\(⋮\)d

2n+6-(2n+5) = 1 \(⋮\)d

=> d =1

=> \(\frac{2n+5}{n+3}\)là phân số tối giản

28 tháng 4 2017

Gọi n là ƯC ( n + 1 ; 2n + 1 ) và n E N*

Suy ra n + 1 chia hết cho n

        2n + 1 chia hết cho n

Vậy 2n + 2 chia hết cho n

      2n + 1 chia hết cho n

nên (2n + 2) - (2n + 1) chia hết cho n

   =  2n + 2 - 2n - 1 chia hết cho n 

   =           1        chia hết cho n suy ra n = 1

Vậy n + 1 và 2n + 1 là nguyên tố cùng nhau

Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản

       

28 tháng 4 2017

Gọi d là UCLN(n+1 ; 2n+1 )

\(\Rightarrow n+1⋮d\)và \(2n+1⋮d\)

\(\Rightarrow2.\left(n+1\right)⋮d\)hay \(2n+2⋮d\)

\(\Rightarrow2n+2-\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\)

Vậy d = 1/-1 \(\Rightarrow dpcm\)

Ai thấy đúng thì ủng hộ

6 tháng 6 2017

Gọi d là ƯCLN của (n;n+1)

\(\Rightarrow\)n chia hết cho d; (n+1) chia hết cho d

\(\Rightarrow\)(n+1) - n chia hết cho d

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow d\in\){1;-1}

Vậy \(\frac{n}{n+1}\)là phân số tối giản

6 tháng 6 2017

gọi d là ƯCLN{n;n+1}

ta có: n chia hết ; n+1 chia hết cho d (1)

=> n+1-n chia hết cho d

=> 1 chia hết cho d (2)

từ (1) và(2)=> d= +1 và -1

vậy \(\frac{n}{n+1}\)là phân số tối giản

18 tháng 3 2018

Mk sẽ giải từng câu :) 

Bài 1 : 

Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)

\(\Rightarrow\)\(2⋮d\)

\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n 

Chúc bạn học tốt ~ 

18 tháng 3 2018

1. Gọi d = ƯCLN (2n+2,6n+5)

=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d

Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d

                     => 6n + 6 - 6n - 5 chia hết cho d

                     => 1 chia hết cho d

                    => d =1

=>  ƯCLN (2n+2,6n+5) = 1

 Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản

2. Ta có:

B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{70}\))

B = 27/35

\(\frac{27}{35}< 1\)

=> B < 1

3.      x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)

         x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)

         x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)

         x + \(\frac{8}{45}=\frac{-37}{45}\)

                      x = \(\frac{-37}{45}-\frac{8}{45}\)

                      x = -1