\(\frac{n+1}{n+2}\)tối giản với \(n\in N\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

Với số tự nhiên n

Ta có: ( n + 1; n + 2 ) = ( (n + 2 ) - ( n + 1 ) ; n + 1 ) = ( n ; n + 1 ) = ( ( n + 1 ) - n ; n ) = ( 1; n ) = 1 

=> n + 1 và n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{n+1}{n+2}\) tối giản.

2 tháng 4 2017

Gọi d=ƯCLN(n2+n-1 ; n2+n+1)

=> \(n^2+n-1⋮d\)

\(n^2+n+1⋮d\)

=> \(\left(n^2+n+1\right)-\left(n^2+n-1\right)⋮d\)

=> \(2⋮d\)

Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ

=> \(d\ne2\)

=> d=1

Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản

22 tháng 2 2019

Gọi d=ƯCLN(n2+n-1 ; n2+n+1)

=> n^2+n-1⋮d

n^2+n+1⋮d

=> (n2+n+1)−(n2+n−1)⋮d

=> 2⋮d

Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ

=> d khác 2

=> d=1

Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản

4 tháng 2 2022

hahaa

25 tháng 1 2018

Vì n và n + 1 là hai số tự nhiên liên tiếp nên Ư ( n, n + 1 ) = 1

=> \(\frac{n}{n+1}\) là phân số tối giản

Mk nói thế cho nhanh thôi chứ đg còn cách khác nữa

25 tháng 1 2018

Ư => UCLN nha bạn, mk nhầm

6 tháng 5 2016

Ta thấy : (với \(n\in N\)) thì n + 1 > n.

Giả sử như \(\frac{n}{n+1}\)chưa tối giản thì n + 1 phải chia hết cho n và n khác 1. 

=> n + 1 chia hết cho n

=> 1 chia hết cho n

=> n = 1 

=> loại 

Vậy \(\frac{n}{n+1}\) là phân số tối giản.

 

6 tháng 5 2016

Gọi d là Ước chung của n và n+1

Ta co:

n chia hết cho d

n+1 chia het cho d

=> n+1 - n chia hết cho d

=> 1 chia het cho d

Vậy n và n+1 là 2 số nguyên tố cùng nhau

=> n/n+1 la phan so toi gian.

 

14 tháng 5 2017

a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]

b) Gọi d là ước chung lớn nhất của 3n và 3n+1

=> 3n \(⋮\)

Và: 3n+1 \(⋮\)d

=> (3n+1)-3n \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d \(\in\){ 1}

Vậy \(\frac{3n}{3n+1}\)là phân số tối giản

Duyệt đi, chúc bạn học giỏi!

8 tháng 6 2017

\(\frac{3n}{3n+1}\)

16 tháng 2 2019

Ta cần c/m: \(\left(n;n+1\right)=1\)

Thật vậy,đặt \(\left(n;n+1\right)=d\).Ta có:

\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\)

Suy ra \(d=1\).Vậy \(\frac{n}{n+1}\) là phân số tối giản với mọi n thuộc Z,n khác 0. (đpcm)

16 tháng 2 2019

Gọi d là ƯCLN\((n,n+1)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy : ......

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N