Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN(2n+1;5n+2),ta có:
=>[5(2n+1)]-[2(5n+2)] chia hết d
=>1 chia hết cho d
<=>d=1
=> phân số trên tối giản
Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)
Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)
\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)
\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)
\(\Rightarrow5n+1⋮d\)
\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *
Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)
=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản
Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)
=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
Gọi d là ước chung của 2n + 1 và 5n + 2
Ta có: 2n + 1 chia hết cho d => 5.(2n + 1) chia hết cho d => 10n + 5 chia hết cho d
5n + 2 chia hết cho d => 2.(5n + 2) chia hết cho d => 10n + 4 chia hết cho d
=> (10n + 5) - (10n + 4) chia hết cho d
=> 10n + 5 - 10n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy \(\frac{2n+1}{5n+2}\)là một phân số tối giản, với n \(\in\) N
Gọi a là UCLN( 2n+1,5n+2)
ta có 2n+1 chia hết cho a=> 5(2n+1) chia hết cho a hay 10n + 5 chia hết a
5n+2 chia hết cho a=> 2(5n+2) chia hết cho a hay 10n + 4 chia hết a
10n + 5 chia hết a
10n + 4 chia hết a=>
(10n + 5 ) -( 10n + 4 ) chia hết a hay 1chia hết a=> a=1
Vậy ps đó là 1 ps tối giản với n thuộc N
k nha