\(\dfrac{4n+1}{12n+7}\) là phân số tối giản 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d là UCLN(4n+1;12n+7)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\12n+7⋮d\end{matrix}\right.\)

\(\Leftrightarrow3\left(4n+1\right)-12n-7⋮d\)

\(\Leftrightarrow12n+3-12n-7⋮d\)

\(\Leftrightarrow-4⋮d\)

\(\Leftrightarrow d\inƯ\left(-4\right)\)

\(\Leftrightarrow d\in\left\{1;-1;2;-2;4;-4\right\}\)(1)

Ta có: 4n+1 và 12n+7 là hai số lẻ 

nên ƯCLN(4n+1;12n+7) là số lẻ

hay d là số lẻ

\(\Leftrightarrow d⋮2̸\)(2)

Từ (1) và (2) suy ra \(d\in\left\{1;-1\right\}\)

hay d=1

\(\LeftrightarrowƯCLN\left(4n+1;12n+7\right)=1\)

\(\Leftrightarrow\dfrac{4n+1}{12n+7}\) là phân số tối giản(đpcm)

27 tháng 2 2017

Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d

=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d 

=>12n-8 chia hết cho d và 12n-9 chia hết cho d 

=>(12n-8)-(12n-9) chia hết cho d 

=>1 chia hết cho d 

=>d=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản

27 tháng 2 2017

Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m

=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m

=>12n+3 chia hết cho m và 12n+2 chia hết cho m 

=>(12n+3)-(12n+2) chia hết cho m

=>1 chia hết cho m

=>m=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản

11 tháng 1 2016

Đặt UCLN(2n + 1 ; 4n + 3) = d

2n + 1 chia hết cho d => 4n + 2 chia hết cho 

Mà UCLN(4n + 2 ; 4n + 3) = 1

=> d = 1 => DPCM

DD
7 tháng 11 2021

a) Đặt \(d=\left(4n+7,5n+9\right)\)

Suy ra 

\(\hept{\begin{cases}4n+7⋮d\\5n+9⋮d\end{cases}}\Rightarrow4\left(5n+9\right)-5\left(4n+7\right)=1⋮d\Rightarrow d=1\)

Do đó ta có đpcm. 

b) Đặt \(d=\left(4n^2+12n+1,n+3\right)\)

Suy ra

 \(\hept{\begin{cases}4n^2+12n+1⋮d\\n+3⋮d\end{cases}}\Rightarrow4n^2+12n+1-4n\left(n+3\right)=1⋮d\Rightarrow d=1\)

Do đó ta có đpcm. 

19 tháng 2 2017

Bạn ơi kết bạn đí rồi mình giải cho!

19 tháng 2 2017

ta có ucln của 12m+1, 30n+2 =d

=> (12n+1)chia hết cho d thì 5(12n+1) chia hết cho d hay 60n+5 chia hết cho d

30n+2 : d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d 

suy ra hiệu của 60n+5 và 60n+4 chia hết cho d hay 1 chia hết cho d => d là ước của 1

suy ra d bằng 1 

suy ra phân số trên là tối giản

23 tháng 5 2017

Gọi ƯCLN (12n+1,30n+2) là d

\(\Rightarrow\left(12n+1\right)⋮d\)

\(\left(30n+2\right)⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy ƯCLN \(\left(12n+1,30n+2\right)=1\Leftrightarrow\dfrac{12n+1}{30n+2}\) là p/s tối giản \(\left(dpcm\right)\)

23 tháng 5 2017

Gọi ước chung lớn nhất của 12n+1 và 30n+ 2 là d

\(\Rightarrow\) ( 12n+1) \(⋮\) d và ( 30n+2 ) \(⋮\) d

\(\Rightarrow\) \(\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)

\(\Leftrightarrow\) ( 60n + 5 - 60n - 4 ) \(⋮d\)

\(\Leftrightarrow\) 1 \(⋮\) d hay d= 1

Vậy ước chung lớn nhất của 12n+ 1 và 30n+2 là 1 hay \(\dfrac{12n+1}{30n+2}\) là phân số tối giản .

10 tháng 2 2018

Gọi d là Ư(4n+1;6n+1)            (1)

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}\)

\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)

\(\Rightarrow24n+6-24n-4⋮d\)

\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)

\(\Rightarrow0+2⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{-1;-2;1;2\right\}\)             (2)

(1)(2) \(\Rightarrow\)\(ƯC\left(4n+1;6n+1\right)=\left\{-1;-2;1;2\right\}\) 

                  mà \(4n⋮2;1⋮̸2\) \(\Rightarrow4n+1⋮̸2\)

\(\RightarrowƯC\left(4n+1;6n+1\right)=\left\{-1;1\right\}\)

vậy phân số \(\frac{4n+1}{6n+1}\) là p/s tối giản với mọi n thuộc N*

5 tháng 3 2018

\(\frac{4n+1}{6n+1}=\frac{2.(2n+\frac{1}{2})}{3.\left(2n+\frac{1}{2}\right)}=\frac{2}{3}\) nhớ k cho mình nha 

10 tháng 1 2016

Gọi d là UCLN (12n+1 và 30n+2)

=>12n+1 chia hết cho d và 30n+2 chia hết cho d

=>5.(12n+1)=60n+5 chia hết cho d và 2.(30n+2)=60n+4 chia hết cho d

=>(60n+5)-(60n+4)=60n+5-60n-4=1 chia hết cho d

=> d là 1 

=>12n+1/30n+2 tối giản

10 tháng 1 2016

Đặt ƯCLN(12n+1, 30n+2) = d

=> (12n+1)-(30n+2) chia hết cho d

=> 5.(12n+1)-2.(30n+2) chia hết cho d

=> 60n+5-60n-4 chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> ƯCLN (12n+1, 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản (đpcm).