\(\dfrac{2n+3}{n^2+3n+2}\)là phân số tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2n+3}{n^2+3n+3}=\dfrac{\left(2n^2+6n+6\right)-\left(n^2+4n+4\right)-1}{n^3+3n+3}\)

=\(2-\dfrac{\left(n+2\right)^2}{n^2+3n+3}-\dfrac{1}{n^2+3n+3}\)

Ko chắc,có thể sai

15 tháng 1 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d =>  n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d 
 => n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d 
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d  hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d  
=>  (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d  hay 1 chia hết cho d  
Do đó  (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối giản (Đ.P.C.M)

tk cho mk nha $_$

5 tháng 4 2017

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

18 tháng 2 2018

Gọi d là ƯCLN ( 2n+1, 3n+2)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản

18 tháng 2 2018

Fan Nao kìa  , lúc còn sống t là fan cuồng của Nao đó

2 tháng 7 2018

Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )

=> n3 + 2n \(⋮\)d  ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )

Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )

Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d

=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d

=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d

=> n2 + 1 \(⋮\)d ( * )

=> n2 . ( n+ 1 ) \(⋮\)d

=> n4 + n2 \(⋮\)d ( 4 )

Từ ( 3 ) và ( 4 ) => ( n+ 2n2 ) - ( n4 + 2n ) \(⋮\)d

=> n2 \(⋮\)d ( 5 )

Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

Vậy : phân số đã cho tối giản

25 tháng 7 2015

ta có n4+3n2+1=(n3+2n)n+n2+1

n3+2n=(n2+1)n+n

n2+1=n.n+1

n=1.n

vậy ucln(n4+3n2+1, n3+2n)=1(đpcm)

26 tháng 3 2019

a, Gọi d là ƯCLN( 2n-3; n-2 ). Ta có:

\(\hept{\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n-3⋮d\\2n-4⋮d\end{cases}}}\)

\(\Rightarrow\left(2n-4\right)-\left(2n-3\right)⋮d\)

\(\Rightarrow1⋮d\)

=> 2n - 3 và n - 2 nguyên tố cùng nhau <=> Phân số \(\frac{2n-3}{n-2}\)tối giản.

b, Gọi d là ƯCLN( n + 2; 3n + 5 ). Ta có:

\(\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}}\)

\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

=> n + 2 và 3n + 5 nguyên tố cùng nhau <=> Phân số \(\frac{n+2}{3n+5}\)tối giản.

29 tháng 3 2019

You're very good , thank you very much 

5 tháng 2 2020

kin

kb nha

5 tháng 2 2020

chưng minh tử và mẫu là nguyên tố cùng nhau