Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(\frac{a}{3}+4y\right)^2=\frac{a^2}{9}+\frac{8ay}{3}+16y^2\)
\(2,\)Bạn xem lại đề bài giùm mk nhé
\(\left(x^2+\frac{2}{5}y\right).\left(x^2-\frac{2}{5}y\right)=\left(x^2\right)^2-\left(\frac{2}{5}y\right)^2=x^4-\frac{4}{25}y^2\)
Gọi d là ƯCLN của 3n+2 và 4n+3
Theo đề bài ta có:
\(\hept{\begin{cases}3n+2⋮d\\4n+3⋮d\end{cases}}=>\hept{\begin{cases}4\left(3n+2\right)⋮d\\3\left(4n+3\right)d\end{cases}}\)
\(=>4\left(3n+2\right)-3\left(4n+3\right)⋮d\)
\(=>12n+8-12n-9⋮d\)
\(=>1⋮d=>d=1\)
Vì d=1 nên \(ƯCLN\)\(\left(3n+2,4n+3\right)=1\)
Vậy \(\frac{3n+2}{4n+3}\) là phân số tối giản
k mik đi
Gọi ƯCLN \(\frac{3n+2}{4n+3}\)là d, ta có :
3n + 2 \(⋮\)d → 12n + 8 \(⋮\)d ( nhân 3n + 2 với 4 )
4n + 3 \(⋮\)d → 12n + 9 \(⋮\)d ( nhân 4n + 3 với 3 )
→ ( 12n + 9 ) - ( 12n + 8 ) \(⋮\)d
( 12 n - 12n ) + ( 9 - 8 ) \(⋮\)d
1 \(⋮\)d → d \(\in\)Ư ( 1 ) = 1. Vì các số tối giản có ước là 1 và chính nó.
Vậy ........................
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}\)
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{n-1}-\frac{1}{n}\).
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\)
\(\Rightarrowđpcm\)
Gọi vế trái là A. Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}=\frac{1}{n-1}-\frac{1}{n}.\)
=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
=> \(A< 2-\frac{1}{n}\) (ĐPCM)
ko vt lại đề
=> (x-1)/15 -133 + ( x-5)/10 -197 + x/5 -392 -2019 =0
=> (x-1)/15 + (x-5)/10 + x/5 - 2741=0
=> (2x-2)/30 + (3x-15)/30 + 6x/30 =2741
=> ( 2x-2+3x-15+6x)/30 =2741
=> 11x-17=82230
=> 11x= 82247
=> x= 7477
vì 7477 là số nguyên => nghiệm của phương trình là số nguyên
Vậy....
từ trang 1 dến 9 có 9 chữ số
từ trang 10 đến 99 có số chữ số là
( 99 - 10 ) : 1 + 1 = 90 số
để viết 90 số có 2 chữ số cần số chữ số là
90 . 2= 180 chữ số
từ 100 đến 999 có số số là
( 999 - 100 ) : 1 + 1 = 900 số
để viết 900 số có 3 chữ số cần số chữ số là
900 . 3 = 2700 chữ số
từ 1000 đến 1032 có số số là
( 1032 - 1000 ) : 1 + 1 = 33 số
để viết 33 số có 4 chữ số ta cần số chữ số là
33 . 4 = 132 chữ số
cần tất cả số chữ số để viết từ 1 đến 1032 là
9 + 180 + 2700 + 132 = 3021 chữ số
Ta có \(\frac{n^5}{30}+\frac{n^3}{6}+\frac{4n}{5}=\frac{n^5+5n^3+24n}{30}\)
Khi đó n5 + 5n3 + 24n
= n(n4 + 5n2 + 24)
= n(n4 + 5n2 - 6 + 30)
= n(n4 - n2 + 6n2 - 6) + 30n
= n[n2(n2 - 1) + 6(n2 - 1)] + 30n
= n(n2 + 6)(n2 - 1) + 30n
= n(n2 - 4 + 10)(n2 - 1) + 30n
= n(n2 - 4)(n2 - 1) + 10n(n2 - 1) + 30n
= (n - 2)(n - 1)n(n + 1)(n + 2) + 10(n - 1)n(n + 1) + 30n
Nhận thây (n - 2)(n - 1)n(n + 1)(n + 2) \(⋮\)30 (tích 5 số nguyên liên tiếp) (1)
10(n - 1)n(n + 1) \(⋮\)30 (2)
30n \(⋮\)30 (3)
Từ (1) ; (2) ; (3) => (n - 2)(n - 1)n(n + 1)(n + 2) + 10(n - 1)n(n + 1) + 30n \(⋮\)30
=> n5 + 5n3 + 24n \(⋮\)30
=> P \(\inℤ\)(ĐPCM)
5 phút nữa thì mk sẽ tự giải