Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Phép đồng dạng tỉ số k biến 2 điểm M, N thành 2 điểm M',N' sao cho M'N' = kMN
- Phép đồng dạng tỉ số b biến 2 điểm M',N' thành 2 điểm M'',N''sao cho M''N'' = pM'N'
⇒ M''N'' = pkMN
Vậy: Nếu thực hiện liên tiếp phép đồng dạng tỉ số k và phép đồng dạng tỉ số p ta được phép đồng dạng tỉ số pk
Đáp án C
Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14
2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.
3. Qua phép vị tự có tỉ số đường tròn biến thành chính nó.
12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó
Dễ thấy bán kính của (C') bằng 4. Tâm I' của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O, tỉ số \(k=-2,I\) biến thành \(I_1\left(-2;-4\right)\). Qua phép đối xứng qua trục \(Ox\), \(I_1\) biến thành \(I'\left(-2;4\right)\).
Từ đó suy ra phương trình của (C') là \(\left(x+2\right)^2+\left(y-4\right)^2=16\)
Phép vị tự tâm B tỉ số biến tam giác ABC thành tam giác A'B'C'. Phép đối xứng qua đường trung trực của BC biến tam giác A'B'C' thành tam giác A'AC''. Vậy ảnh của tam giác ABC qua phép đồng dạng đã cho là tam giác A'AC''.
A B C A' C' D
Phép vị tự tâm B tỉ số \(\dfrac{1}{2}\) biến tam giác ABC thành tam giác A'C'B.
Phép đối xứng qua đường trung trực của BC biến tam giác A'C'B thành tam giác A'C'B thành tam giác DC'C.
Vậy ảnh của tam giác ABC qua phép đồng dạng đã cho là tam giác DC'C.
Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm
Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.
Phép vị tự tâm O, tỉ số k biến điểm M, N thành 2 điểm M',N' sao cho OM'→ = kOM→
Vậy phép vị tự tỉ số k là phép đồng dạng tỉ số |k|.