Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right).4\)
\(=8\left(n+1\right)\) chia hết cho 8
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b ) \(\left(2n+1\right)^2-1\)
\(=\left(2n+1-1\right)\left(2n+1+1\right)\)
\(=2n.\left(2n+2\right)\)
\(=2.2n\left(n+1\right)\)
\(=4n\left(n+1\right)\)
Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
\(\Rightarrow4n\left(n+1\right)⋮8\).
c ) Gọi 2 số lẻ liên tiếp là \(2n+1\) và \(2n-1\)
Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)
\(=4n.2\)
\(=8n\) chia hết cho 8
Vậy .........
Bài 1 :
Ta có :
a chia 3 dư 1 ⇒a=3k+1⇒a=3k+1
b chia 3 dư 2 ⇒b=3k1+2⇒b=3k1+2 (k;k1∈N)(k;k1∈N)
ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2
Mà 3k.k1+2.3k+3.k1⋮33k.k1+2.3k+3.k1⋮3
⇒3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2
⇒ab⇒ab chia 3 dư 2 →đpcm→đpcm
Bài 2 :
Ta có :
n(2n−3)−2n(n+1)n(2n−3)−2n(n+1)
=2n2−3n−2n2−2n=2n2−3n−2n2−2n
=−5n⋮5=−5n⋮5
⇒n(2n−3)−3n(n+1)⋮5⇒n(2n−3)−3n(n+1)⋮5 với mọi n
→đpcm
Bài 1:
a=3n+1
b= 3m+2
a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.
Bài 2:
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
= -5n
-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}