\(\left(a^4-1\right)\left(a^415a^2+1\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

\(a^2nha\)

3 tháng 1 2017

Ta có : a2 + 8a + 7 = ( a2 + 2a + 1 )  + ( 6a + 6 )

= [ a2 + a + a + 1 ] + ( 6a + 6 )

= [ a( a + 1 ) + ( a + 1 ) ] + 6( a + 1 )

= ( a + 1 ) ( a + 1 ) + 6 ( a + 1 )

= ( a + 1 ) [ ( a + 1 ) + 6 ]

= ( a + 1 ) ( a + 7 )

Vì a + 1 chia hết cho a + 1 => ( a + 1 ) ( a + 7 ) chia hết cho a + 1 

=> a2 + 8a + 7 chia hết cho a + 1  ( đpcm )

3 tháng 1 2017

Theo bài ra ta có : [a2+8a+7] chia hết cho [a+1] =>[a2+8a+7]=[2a+8a+7]=[10a+7] chia hết cho 10[a+1]                                                         =>10[a+1] - [10a+7] chia hết cho a+1                                                                                                                                                 =>10a+10-10a-7 chia hết cho a+1                                                                                                                                                       =>3 chia hết cho a+1                                                                                                                                                                         =>a+1 thuộc Ư(3)={1;3}                                                                                                                                                                     => Ta có : a+1 = 1 =>a+0     ; a+1=3 =>a=2         (nhớ xuống dòng bạn nhé)  Vậy [a2+8a+7] chia hết cho [a+1]

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.

5 tháng 12 2019

gips mk với ai làm nhanh nhất mk sẽ k

7 tháng 5 2017

\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng

\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)

30 tháng 1 2019

1. \(x⋮12,x⋮10\Rightarrow x\in BC(12,10)\)và -200 < x < 200

Theo đề bài , ta có :

\(12=2^2\cdot3\)

\(10=2\cdot5\)

\(\Rightarrow BCNN(10,12)=2^2\cdot3\cdot5=60\)

\(\Rightarrow BC(10,12)=B(60)=\left\{0;60;-60;120;-120;180;-180;240;...\right\}\)

Mà \(x\in BC(10,12)\)và -200 < x < 200 => \(x\in\left\{0;60;-60;120;-120;180;-180\right\}\)

Học tốt

Câu 1: 

\(\Leftrightarrow6x-18-8x-4-2x+8=4-3\left(2x+1\right)+5\left(2x-1\right)\)

=>-4x-14=4-6x-3+10x-5

=>-4x-14=4x-4

=>-8x=10

hay x=-5/4