Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
Ta có:\(n^2+n+2=n\left(n+1\right)+2\)
+)Xét n chia hết cho 3 <=> n=3k \(\left(k\in Z+\right)\)
=>\(n^2+n+2=3k\left(3k+1\right)+2\) chia 3 dư 2 (1)
+)Xét n chia 3 dư 1 <=> n=3k+1
=>\(n^2+n+2=\left(3k+1\right)\left(3k+2\right)+2=9k^2+6k+3k+2+2\)
\(=3\left(3k^2+2k+k+1\right)+1\)chia cho 3 dư 1 (2)
+)Xét n chia 3 dư 2 <=> n=3k+2
=>\(n^2+n+2=\left(3k+2\right)\left(3k+3\right)+2=9k^2+9k+6k+6+2\)
\(=3\left(3k^2+3k+2k+2\right)+2\)chia 3 dư 2 (3)
Từ (1), (2), (3) suy ra n2+n+2 không chia hết cho 3 với \(n\in Z+\)
\(n^2-2n^4+n^2=n^2\left(n^4-2n^2+1\right)=n^2\left(n^2-1\right)^2\)
\(=\left[\left(n-1\right)n\left(n+1\right)\right]^2\)
Mà \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp luôn chia hết cho 6
\(\Rightarrow\left[\left(n-1\right)n\left(n+1\right)\right]^2⋮36\)
Ta có: \(n\in Z^+\)
\(\Rightarrow2^nchẵn\)
\(\Rightarrow2^{2^n}\equiv\left(-1\right)^{2^n}\equiv1\left(mod3\right)\)
\(4^n\equiv1^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow2^{2^n}+4^n+16\equiv1+1+1\equiv3\equiv0\left(mod3\right)\)
\(\Rightarrow2^{2^n}+4^n+16⋮3\left(đpcm\right)\)
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với
C1: Có: \(9.3^{4n}=9.81^n\equiv1.1^n\equiv1\left(mod4\right)\)
\(8.2^{4n}=8.4^{2n}\equiv8\left(-1\right)^{2n}\equiv0\left(mod4\right)\)
\(2019\equiv3\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv1-0+3\equiv0\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮4\) (1)
Có: \(9.3^{4n}=9.81^n\equiv4.1^n\equiv4\left(mod5\right)\)
\(8.2^{4n}=8.4^{2n}\equiv3.\left(-1\right)^{2n}\equiv3\left(mod5\right)\)
\(2019\equiv-1\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv0\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮5\) (2)
Từ (1) và (2) và (4;5)=1 ; 4.5=20
=> \(M=9.3^{4n}-8.2^{4n}+2019\) chia hết cho 20.