\(⋮\) 30 với mọi n\(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

\(n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)(tích của \(3\) số tự nhiên liên tiếp và \(1\) số tự nhiên bất kì)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(\left\{{}\begin{matrix}\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\)(tích \(5\) số tự nhiên liên tiếp và 1 tích có thừa số \(5\))

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)

\(\left\{{}\begin{matrix}n^5-n⋮6\\n^5-n⋮5\end{matrix}\right.\Leftrightarrow n^5-n⋮30\left(đpcm\right)\)

5 tháng 3 2018

n5−n=n(n4−1)=n(n2−1)(n2+1)n5−n=n(n4−1)=n(n2−1)(n2+1)

=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)

=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)

=n(n−1)(n+1)(n−2)(n+2)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)5n(n−1)(n+1)

--Vì n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)là tích của 5 số nguyên liên tiếp

=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 2;3;5

=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 30 (*)

-- vì n(n−1)(n+1)n(n−1)(n+1) là tích của 3 số nguyên liên tiếp

⇒n(n−1)(n+1)⇒n(n−1)(n+1) chia hết cho 2; 3

⇒n(n−1)(n+1)⋮6⇒n(n−1)(n+1)⋮6

=> 5n(n−1)(n+1)⋮5.6=305n(n−1)(n+1)⋮5.6=30 (**)

từ * và ** => n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30

hay n5−n⋮30(đpcm)

like nhoa !! banh

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

a: \(A=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right)\left(n^2+n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n-1\right)\) là tích của bốn số nguyên tiếp

nên A chia hết cho 24

b: \(A=n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)(1)

Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(2\right)\)

Từ (1) và (2) suy ra A chia hết cho 30

c: Vì 7 là số nguyên tố

nên \(n^7-n⋮7\)

7 tháng 9 2017

a) Ta có: \(n^3-n=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Vì n(n - 1)(n + 1) là tích 3 số nguyên liên tiếp

nên n(n - 1)(n + 1) chia hết cho 3. (do trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3)

b) Ta có: \(n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích 5 số nguyên liên tiếp

nên (n - 2)(n - 1)n(n + 1)(n + 2) chia hết cho 5

mà 5n(n - 1)(n + 1) chia hết cho 5

(n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n - 1)(n + 1) chia hết cho 5

Vậy ...

10 tháng 6 2019


Hỏi đáp Toán

28 tháng 6 2017

Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7

2^n-11-17-7
n XX3X

Vậy n=3 thì   (2^n-1);7

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

Bài 1:

Nếu $n$ không chia hết cho $7$ thì:

\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

b)

Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)

Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)

Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)

Tóm lại, $A$ chia hết cho $2$

---------

Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)

Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:

\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)

Vậy \(A\vdots 3\)

-----------------

Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)

+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)

+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$

\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)

Tóm lại $A\vdots 5$

Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)

Ta có đpcm.

a: \(A=n\left(n-1\right)\left(n+1\right)\cdot n\)

TH1: n=2k

n(n-1)(n+1) chia hết cho 6 với mọi n

=>A chia hết cho 12

TH2: n=2k+1

\(A=\left(2k+1\right)\cdot\left(2k+1\right)\cdot2k\cdot\left(2k+2\right)\)

\(=4k\left(k+1\right)\left(2k+1\right)\left(2k+1\right)⋮4\)

mà 2k(2k+1)(2k+2) chia hết cho 6

nen A chia hết cho 12

d: Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(1\right)\)

\(A=n^5-n=n\left(n^4-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\left(2\right)\)

Từ (1) và (2) suy ra A chia hết cho 30