\(⋮\) 30 với mọi n\(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

\(n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)(tích của \(3\) số tự nhiên liên tiếp và \(1\) số tự nhiên bất kì)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(\left\{{}\begin{matrix}\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\)(tích \(5\) số tự nhiên liên tiếp và 1 tích có thừa số \(5\))

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)

\(\left\{{}\begin{matrix}n^5-n⋮6\\n^5-n⋮5\end{matrix}\right.\Leftrightarrow n^5-n⋮30\left(đpcm\right)\)

5 tháng 3 2018

n5−n=n(n4−1)=n(n2−1)(n2+1)n5−n=n(n4−1)=n(n2−1)(n2+1)

=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)

=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)

=n(n−1)(n+1)(n−2)(n+2)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)5n(n−1)(n+1)

--Vì n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)là tích của 5 số nguyên liên tiếp

=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 2;3;5

=> n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) chia hết cho 30 (*)

-- vì n(n−1)(n+1)n(n−1)(n+1) là tích của 3 số nguyên liên tiếp

⇒n(n−1)(n+1)⇒n(n−1)(n+1) chia hết cho 2; 3

⇒n(n−1)(n+1)⋮6⇒n(n−1)(n+1)⋮6

=> 5n(n−1)(n+1)⋮5.6=305n(n−1)(n+1)⋮5.6=30 (**)

từ * và ** => n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)⋮30

hay n5−n⋮30(đpcm)

like nhoa !! banh