Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
n(3−2n)−(n−1)(1+4n)−1=3n-2n2-n-4n2+1+4n=6n-6n2 =6n(1-n) chia hết cho 6 với mọi số nguyên n
\(\left[n^2\left(n+1\right)+2n\left(n+1\right)\right]=\left[\left(n^2+2n\right)\left(n+1\right)\right]=\left[n\left(n+2\right)\left(n+1\right)\right]\)
ta có n(n+1)(n+2) là 3 số tự nhiên liên tiếp mà 3 số tự nhiên liên tiếp luôn chia hết cho 6
Nè, bài này mình chỉ làm được hai câu a,b thoi nha
a) Chứng minh: 432 + 43.17 chia hết cho 16
432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60
b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z
n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)
⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
=> đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=>\left(n+1\right)\left(n^2+2n\right)\)
\(=>n\left(n+1\right)\left(n+2\right)\)
Ta thấy \(n;\left(n+1\right);\left(n+2\right)\)là 3 số tự nhiên liên tiếp
Mà tích của 3 số tn liên tiếp luôn chia hết cho 6
=> \(n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết ch 6 ( đpcm )
Cấm ai chép ...............
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n,(n+1),(n+2) là 3 số lên tiếp nên chúng luôn chia hết cho 6