Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
60n+45=30(2n+1)+15
Ta có 30(2n+1) chia hết cho 30; 15 không chia hết cho 30
=> 60n+45 không chia hết cho 30
vào link này nè bạn:https://olm.vn/hoi-dap/detail/2207034897.html
Ta có: \(60⋮5\)nên \(60⋮5\)
\(45⋮15\)
=>\(60.n+45⋮15\)
Ta lại có: \(60⋮30\)nên \(60⋮30\)
Mà 45 ko chia hết cho 30
=> Với mọi n thuộc N thì \(60.n+45⋮15\)nhưng ko chia hết cho 30 ( đpcm )
Ta có:
\(A=51^n+47^{102}\)
\(\Rightarrow A=\overline{...1}+47^{100}.47^2\)
\(\Rightarrow A=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right).\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\overline{...9}\)
\(\Rightarrow A=\overline{...0}\)
Vì \(\overline{....0}\text{⋮}10\) nên \(A\text{⋮}10\)
Vậy \(A\text{⋮}10\left(đpcm\right)\)
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
Ta có:
(1 + 2 + 3 + ... + n) - 7
\(=\frac{\left(1+n\right).n}{2}-7\)
Vì (1 + n).n là tích 2 số tự nhiên liên tiếp nên (n + 1).n chỉ có thể tận cùng là: 0; 2; 6
=> \(\frac{\left(1+n\right).n}{2}\)chỉ có thể tận cùng là: 0; 5; 1; 6; 3; 8
=> \(\frac{\left(1+n\right).n}{2}-7\)chỉ có thể tận cùng là: 3; 8; 4; 9; 6; 1 không chia hết cho 10
=> (1 + 2 + 3 + ... + n) - 7 không chia hết cho 10 với mọi \(n\in N\)(đpcm)
mình chỉ ns cách lm thôi nha:
đầu tiên mình chứng minh ráng tổng 2 số tự nhiên: 10,15 không chia hết cho 2
và n nhân n= n bình và bình phương của 1 số luôn chia hết cho 2 nên ...................
sau đó xét n lẻ thì lẻ cộng lẻ ra chẵn nên ......................chia hết cho 2